Enseignant · e · s : Blanche Buet, Dominique Hulin et Thomas Letendre.

Feuille 1 – Convolution

Notations. • Soient (X, μ) un espace mesuré et $f: X \to \mathbb{C}$ mesurable. On note

$$\forall p \in [1, +\infty[, \qquad \|f\|_p = \left(\int_X |f(x)|^p \, \mathrm{d}\mu(x)\right)^{\frac{1}{p}} \in [0, +\infty],$$
 et
$$\|f\|_\infty = \inf\{M \geqslant 0 \mid |f(x)| \leqslant M \text{ pour presque tout } x \in X\} \in [0, +\infty].$$

- Soit Ω un ouvert de \mathbb{R}^d , le *support* d'une fonction $f:\Omega\to\mathbb{C}$, noté supp(f), est l'adhérence de $\{x\in\Omega\mid f(x)\neq 0\}$ dans Ω .
- Pour tout $k \in \mathbb{N} \sqcup \{\infty\}$, on note $\mathcal{C}_c^k(\Omega)$ l'espace des fonctions de Ω dans \mathbb{C} de classe \mathcal{C}^k à support compact. On note aussi $\mathcal{D}(\Omega) = \mathcal{C}_c^{\infty}(\Omega)$.
- Soit $p \in [1, +\infty]$, on dit que $f \in L^p(\Omega)$ est à support compact s'il existe un compact $S \subset \Omega$ en dehors duquel f est nulle presque partout, i.e. si f admet un représentant à support compact.
- Pour tout $A \subset \Omega$, on note $\mathbf{1}_A : \Omega \to \{0,1\}$ la fonction indicatrice de A.
- Soit $p \in [1, +\infty]$, on note $L^p_{loc}(\Omega)$ l'espace des classes de fonctions $f : \Omega \to \mathbb{C}$, modulo égalité presque partout, telles que $\mathbf{1}_K f \in L^p(\Omega)$ pour tout compact $K \subset \Omega$.
- Pour tout $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$, on note $|\alpha| = \sum_{i=1}^d \alpha_i$ sa longueur et $\partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_d^{\alpha_d}$.

Exercice 1 (Inclusions entre L^p). Soient (X, μ) un espace mesuré et $p, q \in [1, +\infty]$ tels que $p \leq q$.

- 1. Si $\mu(X) < \infty$, montrer que $L^q(X,\mu) \subset L^p(X,\mu)$. L'inclusion réciproque est-elle vraie?
- 2. Donner un contre-exemple à l'inclusion de la question 1 lorsque $\mu(X) = +\infty$.
- 3. Déduire de la question 1 que, pour tout $p \in [1, +\infty]$, $L^p_{loc}(\mathbb{R}^d) \subset L^1_{loc}(\mathbb{R}^d)$.

Définition (Convolution). Soient f et g deux fonctions mesurables de \mathbb{R}^d dans \mathbb{C} et $x \in \mathbb{R}^d$. Si $y \mapsto f(x-y)g(y)$ est L^1 , on note $f * g(x) = \int_{\mathbb{R}^d} f(x-y)g(y) \, dy$. Un changement de variable montre qu'alors g * f(x) est bien défini et égal à f * g(x). La fonction f * g est appelée la convolée de f et g.

Exercice 2 (Convolution par des indicatrices d'intervalles). 1. Soient a < b et c < d, montrer que $\mathbf{1}_{[a,b]} * \mathbf{1}_{[c,d]}$ est bien définie sur \mathbb{R} et l'expliciter.

2. Soient a < b et $f \in \mathcal{C}^k(\mathbb{R})$, montrer que $\mathbf{1}_{[a,b]} * f$ est bien définie. Vérifier que $\mathbf{1}_{[a,b]} * f \in \mathcal{C}^{k+1}(\mathbb{R})$ et calculer sa dérivée.

Exercice 3 (Support d'une convolée). Soient A et $B \subset \mathbb{R}^d$, on note $A + B = \{a + b \mid a \in A, b \in B\}$.

- 1. Si $A \subset \mathbb{R}^d$ est compact et $B \subset \mathbb{R}^d$ est fermé, montrer que A+B est fermé. Est-ce encore vrai si on suppose seulement A et B fermés?
- 2. Soient f et g deux fonctions continues telles que f * g soit bien définie sur \mathbb{R}^d . Montrer que si $x \notin \operatorname{supp}(f) + \operatorname{supp}(g)$ alors f * g(x) = 0.
- 3. Si de plus f ou g est à support compact, montrer que $\operatorname{supp}(f * g) \subset \operatorname{supp}(f) + \operatorname{supp}(g)$.

Exercice 4 (Convolution et dérivation). 1. Soient $f \in \mathcal{C}_c^1(\mathbb{R}^d)$ et $g \in L^1(\mathbb{R}^d)$, montrer que f * g est de classe \mathcal{C}^1 et que $\frac{\partial}{\partial x_i}(f * g) = \frac{\partial f}{\partial x_i} * g$ pour tout $i \in [1, d] = \{1, \ldots, d\}$.

- 2. Montrer que le résultat est encore vrai si on suppose seulement que $g \in L^1_{loc}(\mathbb{R}^d)$.
- 3. Soient $f \in \mathcal{D}(\mathbb{R}^d)$ et $g \in L^1_{\text{loc}}(\mathbb{R}^d)$, montrer que f * g est \mathcal{C}^{∞} et expliciter ses dérivées partielles.

Exercice 5 (Continuité des translations dans L^p pour $p < +\infty$). Soit $p \in [1, +\infty[$, pour tout $a \in \mathbb{R}^d$ on définit l'opérateur de translation $\tau_a : L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$ par $\tau_a(f) : x \mapsto f(x-a)$. Le but de l'exercice est de prouver que, pour tout $f \in L^p(\mathbb{R}^d)$,

$$\|\tau_a(f) - f\|_p \xrightarrow[a \to 0]{} 0. \tag{1}$$

- 1. Montrer que (1) est vrai lorsque $f \in \mathcal{C}_c^0(\mathbb{R}^d)$.
- 2. Conclure grâce à la densité de $C_c^0(\mathbb{R}^d)$ dans $L^p(\mathbb{R}^d)$.

Exercice 6 (Inégalité de Young, cas particuliers). Soient f et g de \mathbb{R}^d dans \mathbb{C} . Dans cet exercice, on détermine des conditions assurant que f * g est bien définie, et on étudie sa régularité.

- 1. Soient f et $g \in L^1(\mathbb{R}^d)$, montrer que $f * g \in L^1(\mathbb{R}^d)$ et $||f * g||_1 \leq ||f||_1 ||g||_1$.
- 2. Soient f, g et $h \in L^1(\mathbb{R}^d)$, montrer que f * (g * h) = (f * g) * h dans $L^1(\mathbb{R}^d)$.
- 3. Soient $f \in L^1(\mathbb{R}^d)$ à support compact et $g \in L^1_{loc}(\mathbb{R}^d)$, montrer que $f * g \in L^1_{loc}(\mathbb{R}^d)$.
- 4. Soient $f \in L^p(\mathbb{R}^d)$ et $g \in L^q(\mathbb{R}^d)$, où p et $q \in [1, +\infty]$ sont tels que $\frac{1}{p} + \frac{1}{q} = 1$. Vérifier que, pour tout $x \in \mathbb{R}^d$, f * g(x) est bien défini et $|f * g(x)| \leq ||f||_p ||g||_q$. Montrer que f * g est alors uniformément continue.
- 5. Si $p \in [1, +\infty]$, $f \in L^p(\mathbb{R}^d)$ et $g \in L^1(\mathbb{R}^d)$, montrer que $f * g \in L^p(\mathbb{R}^d)$ et $||f * g||_p \leq ||f||_p ||g||_1$. Indication. Appliquer l'inégalité de Hölder pour la mesure à densité $\mu = |g| dx$.

Exercice 7 (Régularisation par convolution). Soient $S \subset \mathbb{R}^d$ un compact et $\varphi \in L^1(\mathbb{R}^d)$ nulle presque partout sur $\mathbb{R}^d \setminus S$ et telle que $\int_{\mathbb{R}^d} \varphi = 1$. Pour tout $\varepsilon > 0$ on définit $\varphi_{\varepsilon} : x \mapsto \frac{1}{\varepsilon^d} \varphi(\frac{x}{\varepsilon})$.

1. Soit $f \in L^1_{loc}(\mathbb{R}^d)$, montrer que pour presque tout $x \in \mathbb{R}^d$:

$$\varphi_{\varepsilon} * f(x) - f(x) = \int_{\mathbb{R}^d} \varphi(y) \left(\tau_{\varepsilon y} f(x) - f(x) \right) dy.$$
 (2)

- 2. Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction uniformément continue, montrer que $\varphi_{\varepsilon} * f \xrightarrow[\varepsilon \to 0]{} f$ uniformément.
- 3. (facultatif) Soit $f \in L^1(\mathbb{R}^d)$, montrer que $\varphi_{\varepsilon} * f \xrightarrow[\varepsilon \to 0]{} f$ dans $L^1(\mathbb{R}^d)$.

Exercice 8 (Inégalité de Hölder généralisée — facultatif). Soit (X, μ) un espace mesuré.

- 1. Soient $p_1, \ldots, p_n \in [1, +\infty]$ tels que $\frac{1}{p_1} + \cdots + \frac{1}{p_n} = 1$ et f_1, \ldots, f_n mesurables de X dans \mathbb{C} , montrer que $||f_1 \cdots f_n||_1 \leqslant ||f_1||_{p_1} \cdots ||f_n||_{p_n}$.
- 2. Soient p, q et $r \in [1, +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Montrer que $||fg||_r \le ||f||_p ||g||_q$ pour tout f et g mesurables de X dans \mathbb{C} .
- 3. Si $\mu(X) < \infty$ et $r \leq q$, montrer que l'inclusion $L^q(X,\mu) \subset L^r(X,\mu)$ est continue.

Exercice 9 (Inégalité de Young, cas général — facultatif). 1. Soient p, q et $r \in [1, +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. On note p' et q' les exposants conjugués de p et q respectivement. Si $f \in L^p(\mathbb{R}^d)$ et $g \in L^q(\mathbb{R}^d)$, vérifier que :

$$\forall x, y \in \mathbb{R}^d$$
, $|f(x-y)g(y)| = |f(x-y)|^{\frac{p}{q'}}|g(y)|^{\frac{q}{p'}} (|f(x-y)|^p |g(y)|^q)^{\frac{1}{r}}$.

En déduire l'inégalité : $\big(|f|*|g|\big)^r\leqslant \|f\|_p^{r-p}\|g\|_q^{r-q}\big(|f|^p*|g|^q\big).$

2. Soient $f \in L^p(\mathbb{R}^d)$ et $g \in L^q(\mathbb{R}^d)$, montrer que $f * g \in L^r(\mathbb{R}^d)$ et $||f * g||_r \leq ||f||_p ||g||_q$.