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I – Primitive d’une fonction

1. Motivation
2. Définition et premiers exemples
3. Non-unicité des primitives
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I.1 – Motivation
Si la fonction x : [0;T ] → R modélise une position en fonction du
temps, alors la fonction x′ représente la vitesse en fonction du temps.

Question
Si on connait la vitesse d’un mouvement en fonction du temps,
peut-on reconstruire la position en fonction du temps ?

Si la fonction v : [0;T ] → [0;V ] modélise un volume en fonction du
temps, alors la fonction v′ représente le débit en fonction du temps.

Question
Si on connait le débit d’un fluide en fonction du temps, peut-on
reconstruire le volume écoulé en fonction du temps ?
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I.2 – Définition et premiers exemples

Soient I un intervalle de R et f : I → R une fonction.

Définition (primitive)
On appelle primitive de f sur I toute fonction dérivable F : I → R
telle que F ′=f , c’est-à-dire telle que, pour tout x ∈ I, F ′(x)=f(x).

Stratégie élémentaire pour déterminer une primitive
Reconnaitre la fonction f comme étant la dérivée d’une fonction F .

Pour cela, on utilise les tableaux de dérivées vus au chapitre 2, en les
lisant de droite à gauche. Il faut les connaitre par coeur. . .
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I.2 – Définition et premiers exemples

Exemple
Soit n ∈ N, la fonction x 7→ xn+1

n+1
de R dans R se dérive en x 7→ xn.

Donc, une primitive de f : x 7→ xn sur R est F : x 7→ xn+1

n+1
.

Cela permet d’obtenir des primitives de n’importe quel polynôme.

Exemple
Soit p : x 7→ 2x2− 5x+2, une primitive P de p sur R est définie par :
pour tout x ∈ R, P (x) = 2× x3

3
− 5× x2

2
+ 2× x = 2

3
x3 − 5

2
x2 + 2x.
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I.2 – Définition et premiers exemples

Exemples
ln est une primitive de la fonction inverse x 7→ 1

x
sur ]0; +∞[.

Soit F : x 7→ ln(−x) de ]−∞; 0[ dans R. Pour tout x < 0 on a
F ′(x)= −1

−x
= 1

x
. Donc F est une primitive de x 7→ 1

x
sur ]−∞; 0[.

Une primitive de g : x 7→ 2x
1+x2 sur R est G : x 7→ ln(1 + x2).

Une primitive de x 7→ 1
1+x2 sur R est la fonction arctan.

Plus généralement, les fractions rationnelles admettent des primitives,
qui s’expriment à l’aide des fonctions ln et arctan.
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I.3 – Non-unicité des primitives

Soient I un intervalle et f : I → R une fonction.

Lemme (non-unicité des primitives)
Si F : I → R est une primitive de f sur I, alors, pour tout C ∈ R, la
fonction F + C : x 7→ F (x) + C est aussi une primitive de f sur I.

Lemme (unicité à une constante près)
Si F1 et F2 sont deux primitives de f sur I, alors il existe C ∈ R telle
que F2 = F1 + C, c’est-à-dire, pour tout x ∈ I, F2(x) = F1(x) + C.

Preuve : Si x ∈ I, on a (F2−F1)
′(x)=F ′

2(x)−F ′
1(x)=f(x)−f(x)=0.

Comme I est un intervalle, la fonction F2 − F1 est constante.
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I.3 – Non-unicité des primitives

Soient I un intervalle et f : I → R une fonction.

Ensemble des primitives
Si F : I → R est une primitive de f , alors les primitives de f sur I
sont exactement toutes les fonctions de la forme F + C avec C ∈ R.

Lemme (unicité de la primitive s’annulant en x0)
Soient F : I → R une primitive de f et x0 ∈ I. Alors la fonction
x 7→ F (x)− F (x0) est l’unique primitive de f qui s’annule en x0.

Preuve : Cette fonction est une primitive de f , qui s’annule en x0.
Soit G une primitive de f , il existe C ∈ R telle que G = F + C. Si
0 = G(x0) = F (x0)+C alors C=−F (x0) et G : x 7→ F (x)− F (x0).
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I.3 – Non-unicité des primitives

Interprétation
Si f : [0;T ] → R modélise une vitesse en fonction du temps, alors
elle admet une primitive (la position x en fonction du temps).

On peut reconstruire la fonction x, à une constante additive près.

Si on sait que x(0) = 0 alors, on peut reconstruire x exactement.

Plus généralement, si on connait la valeur de x(t0) pour un temps
t0 ∈ [0;T ], alors on peut reconstruire la fonction x : [0;T ] → R.
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II – Intégrale d’une fonction

1. Exemple introductif
2. Définition de l’intégrale
3. Interprétation graphique
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II.1 – Exemple introductif

On considère un fil métallique de longueur L (en m), chauffé de
façon homogène à une température T (en °K).

Les lois de la physique nous disent que l’énergie thermique E (en J)
emmagasinée par ce fil est E = c× L× T , où c (en J ·m−1 ·K−1)
est la capacité thermique linéique du matériau.

Problème
Si la température du fil n’est plus homogène mais est fonction de la
position, quelle est l’énergie thermique emmagasinée par le fil ?
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II.1 – Exemple introductif

On représente la position d’un point du fil par un nombre x ∈ [0;L].

La fonction T : [0;L]→R associe à chaque x∈ [0;L] la température
T (x) au point correspondant.

0 L

L
N

4 L
N

(N−2)L
N

(N−1)L
N

2 L
N

3 L
N

k = 3

x

Fixons N ∈ N∗, pensé comme très grand.

On découpe le fil en N portions de même longueur L
N

très petite.

La température est presque constante sur chaque portion :
si 1 ⩽ k ⩽ N , pour tout x ∈ [(k−1)L

N
; k L

N
] on a T (x) ≃ T

(
k L
N

)
.
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II.1 – Exemple introductif
Si 1 ⩽ k ⩽ N , la température sur la k-ième portion est ≃ T

(
k L
N

)
.

L’énergie emmagasinée par cette portion est donc Ek≃c×L
N
×T

(
k L
N

)
.

L’énergie totale emmagasinée par le fil est donc :

E = E1 + E2 + · · ·+ EN

≃ c× L
N
×

(
T
(
L
N

)
+ T

(
2 L
N

)
+ · · ·+ T

(
N L

N

))
.

Plus N est grand, plus on s’attend à ce que l’erreur soit petite.

Cela suggère que :

E = c× lim
N→+∞

L
N
×
(
T
(
L
N

)
+ T

(
2 L
N

)
+ · · ·+ T

(
N L

N

))
.
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II.2 – Définition de l’intégrale
Soient a et b ∈ R tels que a ⩽ b et f : [a; b] → R une fonction.

Définition (intégrale d’une fonction continue)
Si f est continue sur [a; b], alors le nombre réel suivant est bien défini :

lim
N→+∞

b−a
N

×
(
f
(
a+ b−a

N

)
+ f

(
a+ 2 b−a

N

)
+ · · ·+ f(a+N b−a

N
)
)
.

Ce nombre est appelé intégrale de f de a à b et est noté
∫ b

a
f(t) dt.

Par convention, on définit
∫ a

b
f(t) dt = −

∫ b

a
f(t) dt.

Le dt est un symbole formel pour indiquer par rapport à quelle
variable on intègre. Il n’est pas optionnel.

Heureusement, on ne calcule pas les intégrales via cette définition.
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II.2 – Définition de l’intégrale

Retour sur l’exemple introductif
Quitte à supposer que la température T : [0;L] → R est une fonction
continue de la position, l’énergie thermique emmagasinée par le fil est :

E = c× lim
N→+∞

L
N
×

(
T
(
L
N

)
+ T

(
2 L
N

)
+ · · ·+ T

(
N L

N

))

= c

∫ L

0

T (x) dx.
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II.3 – Interprétation graphique
Soit f : [0; 1] → R une fonction continue.

x

y

0
1

f( 3
8
)

2
8

3
8

f( 6
8
)

5
8

6
8

Comme f(3
8
) ⩾ 0, on a 1

8
× f(3

8
) =

(
3
8
− 2

8

)
× f(3

8
) = Aire( )

Comme f(6
8
) ⩽ 0, on a 1

8
× f(6

8
) = −1

8
×

∣∣f(6
8
)
∣∣ = −Aire( ).
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II.3 – Interprétation graphique
Soit f : [0; 1] → R une fonction continue.

x

y

0
1

N = 8

Si N ∈ N∗, on a

1
N

(
f( 1

N
) + f( 2

N
) + · · ·+ f(N−1

N
) + f(N

N
)
)
= Aire( )− Aire( ).
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II.3 – Interprétation graphique
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x

y

0
1

N = 16

Si N ∈ N∗, on a

1
N

(
f( 1

N
) + f( 2

N
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N
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N
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II.3 – Interprétation graphique
Soit f : [0; 1] → R une fonction continue.

x

y

0
1

N = 32

Si N ∈ N∗, on a

1
N

(
f( 1

N
) + f( 2

N
) + · · ·+ f(N−1

N
) + f(N

N
)
)
= Aire( )− Aire( ).
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II.3 – Interprétation graphique
Soit f : [0; 1] → R une fonction continue.

x

y

0
1

+

−

À la limite N → +∞, on interprète l’intégrale comme :∫ 1

0

f(t) dt = Aire( )− Aire( ).

L’intégrale est l’aire signée entre le graphe de f et l’axe des abscisses,
comptée positivement au-dessus de l’axe et négativement en-dessous.
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III – Propriétés de l’intégrale

1. Monotonie
2. Relation de Chasles
3. Linéarité
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III.1 – Monotonie
Soient a et b ∈ R t.q. a ⩽ b et f : [a; b] → R une fonction continue.

Lemme (monotonie de l’intégrale)
Soient m et M ∈ R t.q., pour tout t ∈ [a; b], m ⩽ f(t) ⩽ M . On a

m× (b− a) ⩽
∫ b

a

f(t) dt ⩽ M × (b− a).

En particulier,
∫ a

a

f(t) dt = 0. Et si C ∈ R,
∫ b

a

C dt = C × (b− a).

x

y

a b

M

m

L’aire entre le graphe de f et
l’axe est supérieure à Aire

( )
et inférieure à Aire

( )
.
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III.2 – Relation de Chasles

Soient I un intervalle et f : I → R une fonction continue.

Lemme (relation de Chasles)

Pour tout a, b et c ∈ I, on a
∫ b

a

f(t) dt+

∫ c

b

f(t) dt =

∫ c

a

f(t) dt.

x−1 0 1 2

y

1

2

3 Exemple
Pour f : t 7→1+|t| avec a=−1, b=0 et c=2 :∫ 2

−1

(1+|t|)dt=
∫ 0

−1

(1+|t|)dt+
∫ 2

0

(1+|t|)dt

=

∫ 0

−1

(1− t)dt+

∫ 2

0

(1 + t)dt.
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III.3 – Linéarité
Soient a et b ∈ R tels que a ⩽ b.

Lemme (linéarité de l’intégrale)
Soient f et g des fonctions continues de [a; b] dans R et λ∈R. On a :∫ b

a

(f(t) + g(t)) dt =

∫ b

a

f(t) dt+

∫ b

a

g(t) dt

et
∫ b

a

(λ× f(t)) dt = λ×
∫ b

a

f(t) dt.

Exemple∫ 1

0

(
2t2 + 3t

)
dt =

∫ 1

0

2t2 dt+

∫ 1

0

3t dt = 2

∫ 1

0

t2 dt+ 3

∫ 1

0

t dt.
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IV – Intégrales et primitives

1. Existence de primitives
2. Théorème fondamental de l’analyse
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IV.1 – Existence de primitives

Soient I un intervalle, a ∈ I et f : I → R une fonction continue.

Pour tout x ∈ I, le nombre réel
∫ x

a

f(t) dt est bien défini.

On peut donc définir la fonction Fa : x 7→
∫ x

a

f(t) dt de I dans R.

Lemme (existence de primitives)
La fonction Fa : I → R est l’unique primitive de f qui s’annule en a.

Calculer des intégrales permet de déterminer une primitive de f .

Toute fonction continue admet une primitive, et donc une infinité.
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IV.1 – Existence de primitives
Idée de preuve
On a Fa(a) =

∫ a

a
f(t) dt = 0. On va montrer que F ′

a = f , alors Fa

sera une primitive de f qui s’annule en a, et on sait qu’elle est unique.

Soient x0 et x ∈ I tels que x ̸= x0. Par Chasles, on a

Fa(x) =

∫ x

a

f(t) dt =

∫ x0

a

f(t) dt+

∫ x

x0

f(t) dt = Fa(x0)+

∫ x

x0

f(t) dt.

Si x est proche de x0, pour tout t ∈ [x0;x], on a f(t) ≃ f(x0) donc

Fa(x)− Fa(x0) =

∫ x

x0

f(t) dt ≃
∫ x

x0

f(x0) dt = f(x0)× (x− x0).

Rigoureusement, on prouve F ′
a(x0) = lim

x→x0

Fa(x)− Fa(x0)

x− x0

= f(x0).
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IV.2 – Théorème fondamental de l’analyse
Soient I un intervalle et f : I → R une fonction continue.

Si F est une primitive de f sur I, on connait deux descriptions de Fa,
l’unique primitive de f qui s’annule en a ∈ I :

Fa : x 7−→
∫ x

a

f(t) dt et Fa : x 7−→ F (x)− F (a).

Théorème (lien entre intégrale et primitive)
Soit F une primitive quelconque de f sur I. Pour tout a et b∈I on a :∫ b

a

f(t) dt = [F (t)]ba, où on a défini [F (t)]ba = F (b)− F (a).

Preuve :
∫ b

a
f(t) dt = Fa(b) = F (b)− F (a) = [F (t)]ba.
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IV.2 – Théorème fondamental de l’analyse

Soient a et b ∈ R tels que a ⩽ b et f : [a; b] → R.

Corollaire (théorème fondamental de l’analyse)
Si f est dérivable sur [a; b] et f ′ est continue sur [a; b] alors∫ b

a

f ′(t) dt = f(b)− f(a).

Preuve : La fonction f est une primitive de f ′ sur [a; b], et on
applique le théorème précédent.
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V – Méthodes de calculs d’intégrales

1. Calcul d’intégrales simples
2. Intégration par parties
3. Changement de variable
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V.1 – Calcul d’intégrales simples
Si F est une primitive de f sur [a; b], alors

∫ b

a
f(t) dt = [F (t)]ba.

Exemples
ln est une primitive de t 7→ 1

t
sur ]0,+∞[. Donc∫ 2

1

1

t
dt = [ln(t)]21 = ln(2)− ln(1) = ln(2).

exp est une primitive de exp sur R. Donc∫ 1

0

et dt = [et]10 = e1 − e0 = e− 1.

arctan est une primitive de t 7→ 1
1+t2

sur R. Donc∫ 1

−1

1

1 + t2
dt = [arctan(t)]1−1 = arctan(1)− arctan(−1)

= 2 arctan(1) = 2× π

4
=

π

2
.
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V.1 – Calcul d’intégrales simples
On peut utiliser la linéarité de l’intégrale pour découper le calcul.

Exemple
Soit f : t 7→ 4 cos(t)− t2, qui est bien définie et continue sur R.∫ π

2

−π
2

f(t) dt = 4

∫ π
2

−π
2

cos(t) dt−
∫ π

2

−π
2

t2 dt.

∫ π
2

−π
2
cos(t) dt = [sin(t)]

π
2

−π
2
= sin

(
π
2

)
− sin

(
−π

2

)
= 1− (−1) = 2.

∫ π
2

−π
2
t2 dt =

[
t3

3

]π
2

−π
2

= 1
3

(
π
2

)3 − 1
3

(
−π

2

)3
= 2

3
π3

8
= π3

12
.

Donc,
∫ π

2

−π
2

f(t) dt = 4× 2− π3

12
= 8− π3

12
.
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V.2 – Intégration par parties
Soient u et v deux fonctions de [a; b] dans R.

Lemme (intégration par parties)
Si u et v sont dérivables sur [a; b] et u′ et v′ sont continues sur [a; b],
alors : ∫ b

a

u(t)v′(t) dt = [u(t)v(t)]ba −
∫ b

a

u′(t)v(t) dt.

Preuve : Par le théorème fondamental de l’analyse,

[u(t)v(t)]ba =

∫ b

a

(uv)′(t) dt

=

∫ b

a

(u′(t)v(t) + u(t)v′(t)) dt

=

∫ b

a

u′(t)v(t) dt+

∫ b

a

u(t)v′(t) dt.

On conclut en réagençant les termes.
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V.2 – Intégration par parties

Exemple
Avec u : t 7→ t et v = sin, on a u′ : t 7→ 1 et v′ = cos. Alors,∫ 3

0

u(t)︷︸︸︷
t

v′(t)︷ ︸︸ ︷
cos(t) dt = [

u(t)︷︸︸︷
t

v(t)︷ ︸︸ ︷
sin(t)]30 −

∫ 3

0

u′(t)︷︸︸︷
1

v(t)︷ ︸︸ ︷
sin(t) dt

= 3 sin(3)− 0 +

∫ 3

0

(− sin(t)) dt = 3 sin(3) + [cos(t)]30

= 3 sin(3) + cos(3)− cos(0) = 3 sin(3) + cos(3)− 1.

Intégrer par parties est utile pour intégrer le produit d’un polynôme
avec l’une des fonctions sin, cos ou exp.

En dérivant le polynôme et en primitivant l’autre terme, on se ramène
à une intégrale du même type avec un polynôme de degré inférieur.
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V.2 – Intégration par parties
La fonction ln étant continue sur ]0; +∞[, elle y admet une unique

primitive s’annulant en e, qui est L : x 7→
∫ x

e

ln(t) dt.

Exemple (détermination de L, astucieux)

Pour tout x > 0, on a L(x) =

∫ x

e

ln(t)×1 dt. On intègre par parties :

L(x) =

∫ x

e

u(t)︷︸︸︷
ln(t)×

v′(t)︷︸︸︷
1 dt = [

u(t)︷︸︸︷
ln(t)×

v(t)︷︸︸︷
t ]xe −

∫ x

e

u′(t)︷︸︸︷
1

t
×

v(t)︷︸︸︷
t dt

= ln(x)× x− ln(e)× e−
∫ x

e

1 dt

= x ln(x)− e− (x− e) = x ln(x)− x.

Thomas Letendre Maths 1 – L1 BECV Rennes – Automne 2025 32 / 34



V.2 – Intégration par parties
La fonction ln étant continue sur ]0; +∞[, elle y admet une unique

primitive s’annulant en e, qui est L : x 7→
∫ x

e

ln(t) dt.

Exemple (détermination de L, astucieux)

Pour tout x > 0, on a L(x) =

∫ x

e

ln(t)×1 dt. On intègre par parties :

L(x) =

∫ x

e

u(t)︷︸︸︷
ln(t)×

v′(t)︷︸︸︷
1 dt = [

u(t)︷︸︸︷
ln(t)×

v(t)︷︸︸︷
t ]xe −

∫ x

e

u′(t)︷︸︸︷
1

t
×

v(t)︷︸︸︷
t dt

= ln(x)× x− ln(e)× e−
∫ x

e

1 dt

= x ln(x)− e− (x− e) = x ln(x)− x.
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V.3 – Changement de variable
Soient I un intervalle et deux fonctions u : [a; b] → I et g : I → R.

Lemme (changement de variable)
Si u est dérivable, et u′ et g sont continues, alors∫ b

a

g(u(t))× u′(t) dt =

∫ u(b)

u(a)

g(y) dy.

Preuve : Soit G n’importe quelle primitive de g. Alors, on reconnait
(G ◦ u)′ = (G′ ◦ u)× u′ = (g ◦ u)× u′ dans le premier terme.∫ b

a

g(u(t))× u′(t) dt =

∫ b

a

(G ◦ u)′(t) dt = (G ◦ u)(b)− (G ◦ u)(a)

= G(u(b))−G(u(a)) =

∫ u(b)

u(a)

g(y) dy.
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V.3 – Changement de variable

Exemple

On veut calculer I =

∫ 2

1

te(t
2+1) dt.

Soit u : t 7→ t2 + 1 de R dans R, pour tout t ∈ R, u′(t) = 2t. Donc

I =
1

2

∫ 2

1

2t× e(t
2+1) dt =

1

2

∫ 2

1

u′(t)× eu(t) dt =
1

2

∫ u(2)

u(1)

ey dy.

On a u(1) = 12 + 1 = 1 + 1 = 2 et u(2) = 22 + 1 = 4 + 1 = 5. Donc

I =
1

2

∫ 5

2

ey dy =
1

2
[ey]52 =

1

2

(
e5 − e2

)
.
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