
Chapitre 4 : Limites

Thomas Letendre Maths 1 – L1 BECV Rennes – Automne 2025 1 / 42



I – Différentes notions de limites

1. Limite infinie à l’infini
2. Limite finie à l’infini
3. Limite infinie en un point fini
4. Limite finie en un point fini
5. Limites à droite ou à gauche
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I.1 – Limite infinie à l’infini
Soient a ∈ R et f : [a; +∞[→ R une fonction.

Définition (limite +∞ en +∞)
On note f(x) −−−−→

x→+∞
+∞ ou lim

x→+∞
f(x) = +∞ lorsque :

pour tout C ∈ R, il existe MC ⩾ a t.q. si x ⩾ MC alors f(x) ⩾ C.

On dit alors que f(x) tend vers +∞ quand x tend vers +∞.

Les valeurs de f(x) peuvent être rendues arbi-
trairement grandes en choisissant x assez grand.

Exemple
x2 −−−−→

x→+∞
+∞.

x

y

C

MC
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I.1 – Limite infinie à l’infini
Soient a ∈ R et f : [a; +∞[→ R une fonction.

Définition (limite −∞ en +∞)
On note f(x) −−−−→

x→+∞
−∞ ou lim

x→+∞
f(x) = −∞ lorsque :

pour tout C ∈ R, il existe MC ⩾ a t.q. si x ⩾ MC alors f(x) ⩽ C.

On dit alors que f(x) tend vers −∞ quand x tend vers +∞.

Les valeurs de f(x) peuvent être rendues arbi-
trairement petites en choisissant x assez grand.

Exemple
−x2 −−−−→

x→+∞
−∞.

x

y

C

MC
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I.1 – Limite infinie à l’infini

Similairement, soient b ∈ R et f : ]−∞; b] → R une fonction.

Définition (limite infinie en −∞)
On note f(x) −−−−→

x→−∞
−∞/+∞ lorsque : pour tout C ∈ R, il existe

MC ⩽ b tel que si x ⩽ MC alors f(x) ⩽ C / f(x) ⩾ C.

On dit que f(x) tend vers −∞/+∞ quand x tend vers −∞.

Les valeurs de f(x) peuvent être rendues arbitrairement
petites/grandes pourvu qu’on choisisse x assez petit.
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I.2 – Limite finie à l’infini

Soient f : [a; +∞[→ R une fonction et ℓ ∈ R.

Définition (limite finie en +∞)
On note f(x) −−−−→

x→+∞
ℓ ou lim

x→+∞
f(x) = ℓ lorsque : pour tout ε > 0,

il existe Mε ⩾ a tel que si x ⩾ Mε alors |f(x)− ℓ|⩽ε.

On dit alors que f(x) tend vers ℓ quand x tend vers +∞.

Les valeurs de f(x) peuvent être rendues ar-
bitrairement proches de ℓ pour x assez grand.

Exemple
Pour f : x 7→ 1

x
, on a 1

x
−−−−→
x→+∞

0. x

y

ε

−ε
Mε
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I.2 – Limite finie à l’infini

Soient f : ]−∞; b] → R une fonction et ℓ ∈ R.

Définition (limite finie en −∞)
On note f(x) −−−−→

x→−∞
ℓ ou lim

x→−∞
f(x) = ℓ lorsque : pour tout ε > 0,

il existe Mε ⩽ b tel que si x ⩽ Mε alors |f(x)− ℓ|⩽ε.

On dit alors que f(x) tend vers ℓ quand x tend vers −∞.

Les valeurs de f(x) peuvent être rendues ar-
bitrairement proches de ℓ pour x assez petit.

Exemple
Pour f : x 7→ 1

x
, on a 1

x
−−−−→
x→−∞

0.

x

y

ε

−ε
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I.3 – Limite infinie en un point fini

Soient I un intervalle, x0 ∈ I et f : I \ {x0} → R une fonction.

Définition (limite infinie en un point fini)
On note f(x) −−−→

x→x0

−∞/+∞ lorsque : pour tout C ∈ R, il existe

δC > 0 tel que si |x− x0| ⩽ δC alors f(x) ⩽ C / f(x) ⩾ C.

On dit alors que f(x) tend vers −∞/+∞ quand x tend vers x0.

Les valeurs de f(x) peuvent être rendues arbitrairement
petites/grandes pourvu qu’on choisisse x assez proche de x0.
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I.3 – Limite infinie en un point fini

Exemples
Pour I = R, x0 = 0 et f : x 7→ 1

x2 , on obtient 1
x2 −−→

x→0
+∞.

Pour I = [0;+∞[, x0 = 0 et f = ln, on obtient ln(x) −−→
x→0

−∞.

x

y

C

−δC δC

x

y

C

δC
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I.4 – Limite finie en un point fini

Soient I un intervalle, x0 ∈ I, une fonction f :I \ {x0} → R et ℓ ∈ R.

Définition (limite finie en x0)
On note f(x) −−−→

x→x0

ℓ ou lim
x→x0

f(x) = ℓ lorsque : pour tout ε > 0, il

existe δε>0 tel que si x∈I \ {x0} et |x−x0|⩽δε alors |f(x)− ℓ|⩽ε.

On dit que f(x) tend vers ℓ quand x tend vers x0 (ou en x0).

Les valeurs de f(x) peuvent être rendues arbitrairement proches de ℓ

en choisissant x assez proche de x0.
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I.4 – Limite finie en un point fini
Exemple
On considère I = R, x0 = 0 et f : x 7→ sin(x)

x
de R \ {0} dans R.

Comme on sait que sin est dérivable sur R de dérivée cos, on a

f(x) =
sin(x)

x
=

sin(x)− sin(0)

x− 0
−−→
x→0

sin′(0) = cos(0) = 1.

x
π−π−3π −2π 2π 3π

y

1− ε

1 + ε

−δε δε
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I.5 – Limites à droite ou à gauche

Même parmi les fonctions usuelles, certaines n’ont pas de limites
(finies ou infinies) aux bornes de leur domaine de définition.

Exemples
sin(x) lorsque x → ±∞. 1

x
lorsque x → 0.

Les propriétés qualitatives d’une fonction permettent parfois d’établir
l’existence d’une limite sans savoir dire quelle est cette limite.

Exemple
Si f : ]a; b[→ R est croissante, alors f(x) a des limites (finies ou
infinies) en a et en b. De même si f est décroissante.
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I.5 – Limites à droite ou à gauche
Soient f : ]a; c[∪ ]c; b[→ R une fonction, ℓ1 et ℓ2 ∈ R ∪ {−∞; +∞}.

Définition (limite à droite ou à gauche)
Si la restriction f|]c;b[ : ]c; b[→ R est t.q. f|]c;b[(x) −−→

x→c
ℓ1, on dit

que f admet une limite à droite en c, et on note f(x) −−−→
x→c+

ℓ1.

Si f|]a;c[ : ]a; c[→ R est t.q. f|]a;c[(x) −−→
x→c

ℓ2, on dit que f admet

une limite à gauche en c, et on note f(x) −−−→
x→c−

ℓ2.

Lemme
Si f(x) −−→

x→c
ℓ, alors f(x) −−−→

x→c−
ℓ et f(x) −−−→

x→c+
ℓ.

Si f(x) −−−→
x→c−

ℓ1, f(x) −−−→
x→c+

ℓ2 et ℓ1=ℓ2=ℓ alors f(x) −−→
x→c

ℓ.
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I.5 – Limites à droite ou à gauche

Exemple
1
x

n’a pas de limite quand x → 0, mais
1
x
−−−→
x→0−

−∞ et 1
x
−−−→
x→0+

+∞.
x

y

On note f(x) −−−→
x→x0

ℓ+ si f(x) −−−→
x→x0

ℓ et f(x) ⩾ ℓ proche de x0.

On note f(x) −−−→
x→x0

ℓ− si f(x) −−−→
x→x0

ℓ et f(x) ⩽ ℓ proche de x0.

Exemple
1
x
−−−−→
x→+∞

0+ et 1
x
−−−−→
x→−∞

0−.

Thomas Letendre Maths 1 – L1 BECV Rennes – Automne 2025 14 / 42



I.5 – Limites à droite ou à gauche

Exemple
1
x

n’a pas de limite quand x → 0, mais
1
x
−−−→
x→0−

−∞ et 1
x
−−−→
x→0+

+∞.
x

y

On note f(x) −−−→
x→x0

ℓ+ si f(x) −−−→
x→x0

ℓ et f(x) ⩾ ℓ proche de x0.

On note f(x) −−−→
x→x0

ℓ− si f(x) −−−→
x→x0

ℓ et f(x) ⩽ ℓ proche de x0.

Exemple
1
x
−−−−→
x→+∞

0+ et 1
x
−−−−→
x→−∞

0−.

Thomas Letendre Maths 1 – L1 BECV Rennes – Automne 2025 14 / 42



II – Calculs de limites

1. Stratégie
2. Limites des fonctions usuelles
3. Opérations dans R ∪ {−∞; +∞}
4. Opérations sur les limites
5. Théorèmes des gendarmes
6. Retour sur les formes indéterminées
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II.1 – Stratégie

Si f est une fonction usuelle, les mathématicien·ne·s ont travaillé :
on connait les limites de f(x) aux endroits pertinents.
Il faut les apprendre par coeur.

Si f est somme, produit, composée, etc., de fonctions usuelles, on
va voir comment les limites interagissent avec ces opérations.
▶ On décompose f en fonctions usuelles.
▶ On calcule la limite de chacun des morceaux.
▶ On les recombine pour obtenir la limite de f(x).

Sinon, c’est pénible. On ne vous demande pas de savoir le faire.
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II.2 – Limites des fonctions usuelles
Soit n ∈ N∗, alors on a les résultats suivants.

xn −−−−→
x→+∞

+∞ et xn −−−−→
x→−∞

+∞, si n est pair,

−∞, si n est impair.

1

xn
−−−−→
x→+∞

0+ et
1

xn
−−−−→
x→−∞

0+, si n est pair,

0−, si n est impair.

1

xn
−−−→
x→0+

+∞ et
1

xn
−−−→
x→0−

+∞, si n est pair,

−∞, si n est impair.
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II.2 – Limites des fonctions usuelles

Soit a ∈ R \ {0}, alors on a les résultats suivants.

xa −−−→
x→0+

0+ si a > 0,

+∞ si a < 0,
et xa −−−−→

x→+∞

+∞ si a > 0,

0+ si a < 0.

En particulier,

√
x −−−→

x→0+
0+ et

√
x −−−−→

x→+∞
+∞.

1√
x
−−−→
x→0+

+∞ et
1√
x
−−−−→
x→+∞

0+.
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II.2 – Limites des fonctions usuelles

ex −−−−→
x→−∞

0+ et ex −−−−→
x→+∞

+∞.

ln(x) −−−→
x→0+

−∞ et ln(x) −−−−→
x→+∞

+∞.

arctan(x) −−−−→
x→−∞

− π

2
et arctan(x) −−−−→

x→+∞

π

2
.
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II.3 – Opérations dans R ∪ {−∞; +∞}

On utilise les conventions suivantes pour manipuler + et × avec ±∞.

Conventions pour l’addition
Pour tout ℓ ∈ R, on pose ℓ+∞ = +∞ et ℓ−∞ = −∞.

On pose aussi +∞+∞ = +∞ et −∞−∞ = −∞.

Conventions pour la multiplication
Pour tout ℓ ∈ R∗

+, on pose ℓ× (+∞) = +∞ et ℓ× (−∞) = −∞.

Pour tout ℓ ∈ R∗
−, on pose ℓ× (+∞) = −∞ et ℓ× (−∞) = +∞.

Enfin, (+∞)×(+∞)=+∞ =(−∞)×(−∞) et (−∞)×(+∞)=−∞.
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II.3 – Opérations dans R ∪ {−∞; +∞}

On a aussi des conventions pour manipuler ±∞ dans les quotients.

Conventions pour le quotient
1

+∞
= 0+;

1

−∞
= 0−;

1

0+
= +∞;

1

0−
= −∞.

Formes indéterminées
On ne sait pas donner de sens raisonnable aux expressions de l’une
des formes suivantes :

+∞−∞; ±∞× 0;
0

0
;

±∞
±∞

.
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II.4 – Opérations sur les limites
Soient a ∈ R et f1 et f2 deux fonctions de [a; +∞[ dans R telles que
f1(x) −−−−→

x→+∞
ℓ1 et f2(x) −−−−→

x→+∞
ℓ2, avec ℓ1 et ℓ2 ∈ R ∪ {−∞; +∞}.

Lemme (linéarité de la limite)
Si ℓ1 + ℓ2 n’est pas une forme indéterminée, alors

f1(x) + f2(x) −−−−→
x→+∞

ℓ1 + ℓ2.

Si λ ∈ R et λ× ℓ1 n’est pas une forme indéterminée, alors
λ× f1(x) −−−−→

x→+∞
λ× ℓ1.

Exemples
arctan(x) −−−−→

x→+∞
π
2

et 2× π
2
= π, donc 2 arctan(x) −−−−→

x→+∞
π.

Par ailleurs, x2 −−−−→
x→+∞

+∞. Donc x2 + 2arctan(x) −−−−→
x→+∞

+∞.
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II.4 – Opérations sur les limites
Soient a ∈ R et f1 et f2 deux fonctions de [a; +∞[ dans R telles que
f1(x) −−−−→

x→+∞
ℓ1 et f2(x) −−−−→

x→+∞
ℓ2, avec ℓ1 et ℓ2 ∈ R ∪ {−∞; +∞}.

Lemme (limites de produits et de quotients)
Si ℓ1 × ℓ2 n’est pas une forme indéterminée, alors

f1(x)× f2(x) −−−−→
x→+∞

ℓ1 × ℓ2.

Si f1
f2

est bien définie et ℓ1
ℓ2

n’est pas une forme indéterminée, alors

f1(x)

f2(x)
−−−−→
x→+∞

ℓ1
ℓ2
.

Exemple
1
x
− 2 −−−−→

x→+∞
−2 et ex −−−−→

x→+∞
+∞, donc ( 1

x
− 2)× ex −−−−→

x→+∞
−∞.
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II.4 – Opérations sur les limites

On vient d’énoncer des résultats concernant la limite d’une somme,
d’un produit ou d’un quotient de deux fonctions lorsque x → +∞.

Les résultats analogues sont également valables dans les cas suivants :

lorsque x → −∞ ;

lorsque x → x0, avec x0 ∈ R ;

pour les limites à gauche ou à droite en un point x0 ∈ R.
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II.4 – Opérations sur les limites
Soient f : I → J et g : J → R deux fonctions t.q. g ◦ f est définie.

Soit x0 tel que x0 ∈ I ou x0 est une borne de I.

Soit y0 tel que y0 ∈ J ou y0 est une borne de J .

Lemme (limite de composées)
Si f(x) −−−→

x→x0

y0 et g(y) −−−→
y→y0

ℓ ∈ R∪ {±∞} alors g(f(x)) −−−→
x→x0

ℓ.

Exemple
Pour f : x 7→ −7x et g = exp de R dans R, avec x0 = +∞.
On a f(x) = −7x −−−−→

x→+∞
−∞ = y0 et g(y) = ey −−−−→

y→−∞
0.

Donc g(f(x)) = e−7x −−−−→
x→+∞

0.
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II.5 – Théorèmes des gendarmes

Soient a et ℓ ∈ R et trois fonctions f , g et h de [a; +∞[ dans R.

Théorème (des gendarmes)
On suppose que g(x) −−−−→

x→+∞
ℓ, que h(x) −−−−→

x→+∞
ℓ et que, pour tout

x ∈ [a; +∞[ , on a g(x) ⩽ f(x) ⩽ h(x). Alors on a f(x) −−−−→
x→+∞

ℓ.

Le résultat analogue lorsque x tend vers −∞ ou x0∈R est aussi vrai.

Exemple
Pour g : x 7→ − 1

x
, h : x 7→ 1

x
et f : x 7→ cos(x)

x
de [1; +∞[ dans R.

Pour tout x ⩾ 1, on a −1 ⩽ cos(x) ⩽ 1 donc − 1
x
⩽ cos(x)

x
⩽ 1

x
.

Comme 1
x
−−−−→
x→+∞

0 et − 1
x
−−−−→
x→+∞

0, on a cos(x)
x

−−−−→
x→+∞

0.
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II.5 – Théorèmes des gendarmes

x5 10 15 20

y

−1

0

1

Les graphes de g : x 7→ − 1
x , h : x 7→ 1

x et f : x 7→ cos(x)
x sur [1; +∞[.
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II.5 – Théorèmes des gendarmes
Soient a ∈ R et f et g deux fonctions de [a; +∞[ dans R.

Théorème (du gros gendarme)
Si g(x) −−−−→

x→+∞
+∞ et, pour tout x ∈ [a; +∞[ , on a g(x) ⩽ f(x),

alors f(x) −−−−→
x→+∞

+∞.

Si g(x) −−−−→
x→+∞

−∞ et, pour tout x ∈ [a; +∞[ , on a f(x) ⩽ g(x),

alors f(x) −−−−→
x→+∞

−∞.

Le résultat analogue lorsque x tend vers −∞ ou x0∈R est aussi vrai.

Exemple
Pour g : x 7→ x− 1 et f : x 7→ x+ cos(x), on a x− 1 −−−−→

x→+∞
+∞.

Pour tout x∈R, on a x+cos(x)⩾x−1, donc x+cos(x)−−−−→
x→+∞

+∞.
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II.6 – Retour sur les formes indéterminées

Une forme indéterminée ne signifie pas qu’il n’y a pas de limite. Ça
signifie juste qu’on n’a pas assez d’information pour conclure.

Exemples (de levées d’indétermination)
Soit g : x 7→ −x, on a g(x) −−−−→

x→+∞
−∞. Dans les cas suivants, on a

f(x) −−−−→
x→+∞

+∞ mais on comprend f(x) + g(x) lorsque x → +∞.

f :x 7→ x+ 3. Pour tout x ∈ R, f(x) + g(x) = 3 −−−−→
x→+∞

3.

f :x 7→ x2 + x. Pour tout x ∈ R, f(x) + g(x) = x2 −−−−→
x→+∞

+∞.

f :x 7→ x+cos(x). On a f+g = cos, qui n’a pas de limite en +∞.
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II.6 – Retour sur les formes indéterminées

Exemple
Pour x > 0, on a :

2x2 − 6x+ 4︸ ︷︷ ︸
forme indéterminée en +∞

= 2x2 ×
(
1− 3

x
+

2

x2

)

−−−−→
x→+∞

+∞

.

Lemme (limites des polynômes à l’infini)
Soient d ∈ N et a0, . . . , ad ∈ R avec ad ̸= 0.
Le polynôme P : x 7→ adx

d + ad−1x
d−1 + · · ·+ a1x+ a0 vérifie :

lim
x→+∞

P (x) = lim
x→+∞

adx
d et lim

x→−∞
P (x) = lim

x→−∞
adx

d.
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II.6 – Retour sur les formes indéterminées

Lemme (limites des fractions rationnelles à l’infini)
Soient p, q ∈ N et a0, . . . , ap, b0, . . . , bq ∈ R avec ap ̸= 0 et bq ̸= 0.

La fonction f : x 7→ apx
p + · · ·+ a1x+ a0

bqxq + · · ·+ b1x+ b0
est bien définie sur R

privé d’un nombre fini de points. De plus,

lim
x→+∞

f(x) = lim
x→+∞

apx
p

bqxq
et lim

x→−∞
f(x) = lim

x→−∞

apx
p

bqxq
.

Exemple

lim
x→+∞

3x+ 2

2x3 − 6
= lim

x→+∞

3x

2x3
= lim

x→+∞

3

2x2
= 0.
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II.6 – Retour sur les formes indéterminées

Lemme (comparaison des puissances à l’exponentielle)
Pour tout a > 0, on a xae−x = xa

ex
−−−−→
x→+∞

0.

L’exponentielle l’emporte sur les fonctions puissances.

Lemme (comparaison des puissances au logarithme)
Pour tout a > 0, on a xa

ln(x)
−−−−→
x→+∞

+∞ et xa ln(x) −−−→
x→0+

0−.

Les fonctions puissances l’emportent sur le logarithme.
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III – Études de fonctions

1. To do list de l’étude de fonction
2. Étude de la fonction f : x 7→ x

ln(x)
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III.1 – To do list de l’étude de fonction

Considérons une fonction f : x 7→ f(x), définie par une formule sans
précision du domaine de définition. Faire l’étude de f c’est :

1 déterminer le domaine de définition de f , c’est-à-dire l’ensemble
Df des x ∈ R tels que la formule f(x) a du sens ;

2 déterminer le domaine de dérivabilité de f (penser à x 7→ |x|) ;

3 calculer f ′ et dresser son tableau de signes ;

4 en déduire le tableau de variations de f et le compléter avec les
éventuelles valeurs remarquables et limites aux bornes de f(x) ;

5 dessiner l’allure du graphe de f .
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III.2 – Étude de la fonction f : x 7→ x
ln(x)

Domaine de définition
ln n’est défini que sur ]0; +∞[. Si x > 0, on a ln(x) = 0 ⇐⇒ x = 1.
Si x ∈]0; 1[∪ ]1; +∞[ alors ln(x) est défini et non nul, donc f(x) est
bien défini. Sinon f(x) n’a pas de sens. Donc Df = ]0; 1[∪ ]1; +∞[.

Dérivée
x 7→ x et ln sont dérivables sur Df , donc f aussi. Pour tout x ∈ Df ,

f ′(x) =
1× ln(x)− x× ln′(x)

(ln(x))2
=

ln(x)− x× 1
x

(ln(x))2
=

ln(x)− 1

(ln(x))2
.

Comme ln est strictement croissante sur ]0; +∞[ et ln(e) = 1, on a
ln(x) < 1 si x ∈ ]0; e[ et ln(x) > 1 si x > e.
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III.2 – Étude de la fonction f : x 7→ x
ln(x)

x

ln(x) − 1

(ln(x))2

f ′(x)= ln(x)−1
(ln(x))2

f(x) =
x

ln(x)

0 1 e +∞
− − 0 +

+ 0 + +

− − 0 +

0−

−∞

+∞

ee

+∞+∞

Limites et valeurs particulières

f(e) = e
ln(e)

= e. Par ailleurs, ln(x) −−−→
x→0+

−∞, donc x
ln(x)

−−−→
x→0+

0−.

ln(x) −−−→
x→1−

0−, donc x
ln(x)

−−−→
x→1−

−∞. De même, x
ln(x)

−−−→
x→1+

+∞.

Les fonctions puissances l’emportent sur ln, donc x
ln(x)

−−−−→
x→+∞

+∞.
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III.2 – Étude de la fonction f : x 7→ x
ln(x)

x1 2 3 4 5 6 7

y

−2

−1

0

1

2

3

4

e

e

{
y = x

ln(x)

}
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IV – Continuité

1. Fonctions continues
2. Quelques propriétés des fonctions continues
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IV.1 – Fonctions continues

Soient I un intervalle et f : I → R une fonction.

Définition (continuité)
Soit x0 ∈ I, on dit que f est continue en x0 si f(x) −−−→

x→x0

f(x0).

On dit que f est continue sur I si elle est continue en tout x0 ∈ I.

Les fonctions usuelles (et toutes les fonctions rencontrées jusqu’ici)
sont continues sur chaque intervalle de leur domaine de définition.

Les sommes, produits, quotients, composées de fonctions continues
sont continues partout où elles sont définies.
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IV.1 – Fonctions continues

La fonction H : x 7→

0 si x < 0,

1 si x ⩾ 0,
n’est pas continue en 0. En effet,

H(x) −−−→
x→0−

0 et H(x) −−−→
x→0+

1.

Donc H(x) n’a pas de limite lorsque x → 0.

x
−3 −2 −1 0 1 2 3

y

1
{y = H(x)}

Si I est un intervalle et f : I → R est continue, alors le graphe de f

n’a qu’une seule composante : on peut le tracer sans lever le stylo.
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IV.1 – Fonctions continues
Soient I un intervalle et f : I → R une fonction.

Lemme (dérivable implique continue)
Si f est dérivable en x0 ∈ I, alors elle est continue en x0.

Preuve : pour tout x ∈ I \ {x0} on a

f(x) = f(x0) + (x− x0)
f(x)− f(x0)

x− x0

−−−→
x→x0

f(x0)

.

La réciproque est fausse
La fonction x 7→

√
x est continue mais pas dérivable en 0 : si x > 0,

on a
√
x−

√
0

x−0
=

√
x
x

= 1√
x
−−→
x→0

+∞.
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IV.2 – Quelques propriétés des fonctions continues
Soient a et b ∈ R t.q. a ⩽ b et f : [a; b] → R une fonction continue.

Théorème (existence du maximum et du minimum)
La fonction f admet un min et un max sur [a; b]. C’est-à-dire, il existe
x1 et x2 ∈ [a; b] tels que, pour tout x ∈ [a; b], f(x1) ⩽ f(x) ⩽ f(x2).

x

y

a

x0

x2

x1

b

f(x2)

f(x1)

Théorème (des valeurs intermédiaires)
Si f(a)<0<f(b) ou f(a)>0>f(b), il existe x0∈]a; b[ t.q. f(x0)=0.
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