Chapitre 4 : Limites
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| — Différentes notions de limites

1. Limite infinie a l'infini

2. Limite finie a l'infini

3. Limite infinie en un point fini
4. Limite finie en un point fini

5. Limites a droite ou a gauche
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|.1 — Limite infinie a 'infini
Soient @ € R et f : [a;+00[— R une fonction.

Définition (limite +00 en +00)

On note f(z) T tooou hrf f(z) = +o0 lorsque :
x—>+00

pour tout C' € R, || existe Mc > a t.q. si x > Mg alors f(z) > C

On dit alors que f(z) tend vers +oco quand z tend vers +oo.

Yy

i : x
Mc
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|.1 — Limite infinie a 'infini
Soient a € R et f : [a; +00[— R une fonction.

Définition (limite +00 en +00)

On note f(z) T tooou hrf f(z) = 400 lorsque :
T—+00

pour tout C' € ]R || existe M¢c > a t.q. si x > Mg alors f(z) >

On dit alors que f(z) tend vers +oco quand z tend vers +oo.

Les valeurs de f(x) peuvent étre rendues arbi-

trairement grandes en choisissant x assez grand.
C 4

Exemple

g —— dpa,

T—r+00

x
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|.1 — Limite infinie & I'infini
Soient a € R et f : [a; +00[— R une fonction.
Définition (limite —oo en +00)

On note f(z) T ~ooou III_P f(z) = —oo lorsque :
z—+00

pour tout C' € R || existe Mo > a t.q. si x > M alors f(z) < C.

On dit alors que f(x) tend vers —oo quand z tend vers +oc.

y
Les valeurs de f(x) peuvent étre rendues arbi- |
trairement petites en choisissant x assez grand.
Exemple

—x? —— —00.

T—r—+00
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|.1 — Limite infinie & 'infini
Similairement, soient b € R et f :] — 0o;b] — R une fonction.
Définition (limite infinie en —o0)

On note f(z) — —00/+400 |orsque : pour tout C' € ]R, il existe
Me < b tel quesmc Mg alors [(1) < ('] f(z) =

On dit que f(z) tend vers —oc/—i—oo quand z tend vers —oo

Les valeurs de f(x) peuvent étre rendues arbitrairement

petites/grandes pourvu qu'on choisisse x assez petit.
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|.2 — Limite finie a I'infini
Soient f : [a; +0o[ — R une fonction et ¢ € R.

Définition (limite finie en +00)

On note f(z) = ¢ ou lilll f(z) = ¢ lorsque : pour tout € > 0,
T—r+00 T—>+00

il existe M. > a tel que si x > M, alors |f(z) — {| <e.

On dit alors que f(x) tend vers ¢ quand z tend vers +oc.

Les valeurs de f(x) peuvent étre rendues ar- v

bitrairement proches de { pour x assez grand.

Exemple €

Fouri:x|—>l,onal—>0. 5 z
@ ap e L
T—r+00 € 3
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|.2 — Limite finie a I'infini
Soient f :] — 0o;b] — R une fonction et ¢ € R.

Définition (limite finie en —o0)
On note f(z) — ¢ ou lim f(z) = ¢ lorsque : pour tout € > 0,
il existe M. <b tel que si z < M alors |f(z) — ¢ <e.

On dit alors que f(x) tend vers ¢ quand z tend vers —oo

Les valeurs de f(x) peuvent étre rendues ar- § Y

bitrairement proches de { pour x assez petit. M.

Exemple

Pour f:z+— 1 onali ——0.

T——00
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|.3 — Limite infinie en un point fini
Soient I un intervalle, xy € I et f: I\ {x¢} — R une fonction.

Définition (limite infinie en un point fini)
On note f(z) p— — o0 /400 lorsque : pour tout C' € R, il existe
dc > 0 tel que si |x—x0| dc alors f(z) < C' [/ f(z) >

On dit alors que f(x) tend vers —x/+oo quand z tend vers x.

Les valeurs de f(x) peuvent étre rendues arbitrairement

petites/grandes pourvu qu'on choisisse x assez proche de x.
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|.3 — Limite infinie en un point fini

Exemples

@ Pour I =R, o =0et f:z+— =, on obtient 5 — +o0.
z—0

@ Pour I = [0;400[, zp = 0 et f = In, on obtient In(z) — —o0.

z—0
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|.4 — Limite finie en un point fini
Soient I un intervalle, zo € I, une fonction f:1\{zo} — Ret /e R.

Définition (limite finie en x)
On note f(z) —— ¢ ou lim f(x) = ¢ lorsque : pour tout € > 0, il
T—T0 T—T0

existe 0. >0 tel que si x €I\ {zo} et |x — x| <J. alors | f(x) — | <e.

On dit que f(z) tend vers ¢ quand z tend vers z; (ou en z).

Les valeurs de f(x) peuvent étre rendues arbitrairement proches de ¢
en choisissant x assez proche de x.

Thomas Letendre Maths 1 — L1 BECV Rennes — Automne 2025 10 /42



|.4 — Limite finie en un point fini

Exemple
On considére ] =R, g =0et f: 2 +— w de R\ {0} dans R.

Comme on sait que sin est dérivable sur R de dérivée cos, on a

_ sin(x) _ sin(x) — sin(0)

f(x) » sin’(0) = cos(0) = 1.

T x—0 x—0

/_\

-3 —Nﬂ' 7565 55 Mﬂ‘ 37
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|.5 — Limites a droite ou a gauche

Méme parmi les fonctions usuelles, certaines n'ont pas de limites

(finies ou infinies) aux bornes de leur domaine de définition.

Exemples J

e sin(x) lorsque x — o0, e < lorsque 7 — 0.
x
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|.5 — Limites a droite ou & gauche

Méme parmi les fonctions usuelles, certaines n'ont pas de limites

(finies ou infinies) aux bornes de leur domaine de définition.

Exemples

e sin(x) lorsque x — o0, e < lorsque 7 — 0.
x

Les propriétés qualitatives d'une fonction permettent parfois d'établir

I'existence d'une limite sans savoir dire quelle est cette limite.

Exemple
Si f :]a; b — R est croissante, alors f(z) a des limites (finies ou
infinies) en a et en b. De méme si f est décroissante.
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|.5 — Limites a droite ou a gauche
Soient f :]a;c[U]c; b|— R une fonction, ¢; et {5 € RU {—00; +00}.
Définition (limite a droite ou & gauche)
o Si la restriction fiee:]c;b[— R est t.q. fiep(x) — £1, on dit
r—c

que f admet une limite a droite en ¢, et on note f(x) — b
Tr—C

® Si fllaw t]asc[— R est t.q. fiae(x) — l2, on dit que f admet
r—cC
une limite & gauche en ¢, et on note f(x) —— /5.
T—Cc—
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|.5 — Limites a droite ou a gauche
Soient f :]a;c[U]c; b[— R une fonction, ¢; et {5 € RU {—o00; +00}.
Définition (limite a droite ou & gauche)
o Si la restriction fiee:]c;b[— R est t.q. fiep(x) — £1, on dit
r—c

que f admet une limite a droite en ¢, et on note f(x) — b
Tr—C

® Si fllaw t]asc[— R est t.q. fiae(x) — l2, on dit que f admet
r—cC
une limite & gauche en ¢, et on note f(x) —— /5.
T—Cc—

Lemme
e Sif(x) — ¢, alors f(x) —— (et f(x) —— L.
T—C T—c— z—ct

o Sif(x) —— 4y, f(z) — bhetlh=6L={ alors f(z) — £.
Tr—c— T—>C

T=7C

v
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|.5 — Limites a droite ou a gauche

Exemple
% n'a pas de limite quand  — 0, mais
% ——% -0 et i— tco.

z—0~ T oz—0t
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|.5 — Limites a droite ou a gauche

Exemple

1'n'a pas de limite quand z — 0, mais

8|~ 8

——% -0 et i— tco.
z—0— T z—0t

@ On note f(z) —— (" si f(x) —— L et f(x) = { proche de .

T—xT0 T—T0
@ On note f(z) —— ¢~ si f(x) —— L et f(x) < ¢ proche de .
T—T0 T—T0

Exemple

L i e L ——

T x—+4o0 T——00
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|l — Calculs de limites

. Stratégie

. Limites des fonctions usuelles

. Opérations dans R U {—o0; +0o0}
. Opérations sur les limites

. Théorémes des gendarmes

S G B~ W

. Retour sur les formes indéterminées
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II.1 — Stratégie

@ Si f est une fonction usuelle, les mathématicien-ne-s ont travaillé :
on connait les limites de f(x) aux endroits pertinents.

Il faut les apprendre par coeur.
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II.1 — Stratégie

@ Si f est une fonction usuelle, les mathématicien-ne-s ont travaillé :
on connait les limites de f(x) aux endroits pertinents.
Il faut les apprendre par coeur.

@ Si f est somme, produit, composée, etc., de fonctions usuelles, on
va voir comment les limites interagissent avec ces opérations.
» On décompose f en fonctions usuelles.
» On calcule la limite de chacun des morceaux.

» On les recombine pour obtenir la limite de f(z).

Thomas Letendre Maths 1 — L1 BECV Rennes — Automne 2025 16 /42



II.1 — Stratégie

@ Si f est une fonction usuelle, les mathématicien-ne-s ont travaillé :
on connait les limites de f(x) aux endroits pertinents.
Il faut les apprendre par coeur.

@ Si f est somme, produit, composée, etc., de fonctions usuelles, on
va voir comment les limites interagissent avec ces opérations.
» On décompose f en fonctions usuelles.
» On calcule la limite de chacun des morceaux.

» On les recombine pour obtenir la limite de f(z).
@ Sinon, c'est pénible. On ne vous demande pas de savoir le faire.
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[1.2 — Limites des fonctions usuelles

Soit n € N*, alors on a les résultats suivants.

. . 400, sin est pair,
r —— 4+ 0 et T —

z—+00 77 | —o0, sin est impair.
1 . 1 0", sin est pair,
— —0 et ——
T x—+oo LT r==ee | 07, sin est impair.

1 400, sin est pair,

— — + 00 et — —_—
T 0+ L7 220" | —o0, sin est impair.
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[1.2 — Limites des fonctions usuelles

Soit a € R\ {0}, alors on a les résultats suivants.

. 0t sia>0, " +oo sia >0,
Tt —— et 2% ——
e=0" | 400 sia <0,

En particulier,

vV —— 07" et VT —— + 0.
r—0t+ Tr——+00
1 1 .
— ——— + et — — 0"
\/E z—0+ \/E T—+00
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[1.2 — Limites des fonctions usuelles

e’ —— 07F et e —— + 0.
T——00 T——+00
In(z) —— — o0 et In(x) —— + 0.
z—0+ x—+00
7r 7r
arctan(z) —— — = et arctan(z) —— —.
T——00 2 z—4o00 2
Rennes — Automne 2025
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I1.3 — Opérations dans R U {—o00; +00}
On utilise les conventions suivantes pour manipuler + et x avec Foo0.

Conventions pour |'addition
Pour tout ¢ € R, on pose ¢ 4+ 0o = +oo et { — 00 = —00.

On pose aussi +00 + 00 = +00 et —00 — 00 = —00.
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1.3 — Opérations dans R U {—o0; +00}
On utilise les conventions suivantes pour manipuler + et x avec Foo0.

Conventions pour |'addition

Pour tout ¢ € R, on pose ¢ 4+ 0o = +oo et { — 00 = —00.

On pose aussi +00 + 00 = +00 et —00 — 00 = —00.

Conventions pour la multiplication
Pour tout £ € R%, on pose £ x (+00) = +00 et £ X (—00) = —00.
Pour tout ¢ € R*, on pose ¢ X (+00) = —00 et £ x (—o0) = +o0.

Enfin, (4+00)x(400) =+00 =(—00)x (—00) et (—00)x (+00) =—00.
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I1.3 — Opérations dans R U {—o00; +00}
On a aussi des conventions pour manipuler 0o dans les quotients.

Conventions pour le quotient

1
s e 0+ +00 00
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I1.3 — Opérations dans R U {—o00; +00}
On a aussi des conventions pour manipuler 0o dans les quotients.
Conventions pour le quotient

1 1 1 1
— =0%; — =07 — = +00; — = —00.
400

Formes indéterminées

On ne sait pas donner de sens raisonnable aux expressions de |'une
des formes suivantes :

0 +oo
+ 00 — 0o0; 4+ 0o X 0; =¢ —_—.
0 +oo )
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[1.4 — Opérations sur les limites

Soient a € R et f; et fo deux fonctions de [a; +oo[ dans R telles que
fi(x) —+> (1 et fo(x) —+> 0y, avec (y et £y € RU{—00;+00}.
T—r+00 T—r+00

Lemme (linéarité de la limite)
@ Sily + Uy n'est pas une forme indéterminée, alors
fi(z) + fa(z) P— by + Cs.

@ SiA e R et \x/{ nest pas une forme indéterminée, alors
A X fl(.'E) —— A X 61.
r——+00
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[1.4 — Opérations sur les limites
Soient a € R et f; et fo deux fonctions de [a; +00[ dans R telles que

fi(x) —+> 0y et fo(x) —+> Uy, avec {1 et ly € RU {—o00; +00}.

Lemme (linéarité de la limite)
@ Sily + Uy n'est pas une forme indéterminée, alors

fi(x) + fo2) P 01 + 4.

@ SiA e R et \x/{ nest pas une forme indéterminée, alors
A X fl(.'I?) —— A X 61.
r——+00

Exemples
arctan(r) —— 7 et 2 x T =, donc 2arctan(z) —— 7.
T—r+00 ZT—r+00
Par ailleurs, 2 ——— +0c0. Donc 2% + 2 arctan(z) — +o0.
T——+00 T—+00

v
= i o
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[1.4 — Opérations sur les limites

Soient a € R et f; et fo deux fonctions de [a; +oo[ dans R telles que
fi(x) —+> (1 et fo(x) —+> 0y, avec (y et £y € RU{—00;+00}.
T—r+00 T—r+00

Lemme (limites de produits et de quotients)

@ Sily x ly n'est pas une forme indéterminée, alors
fl(:v) X fQ(l’) — El X ‘62.
r——+00

e Si % est bien définie et % n'est pas une forme indéterminée, alors

fi() b

fo(x) wotos by
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[1.4 — Opérations sur les limites

Soient a € R et f; et fo deux fonctions de [a; +00[ dans R telles que
fi(x) —+> 0y et fo(x) —+> Uy, avec {1 et ly € RU {—o00; +00}.
T—>+00 T—r+00

Lemme (limites de produits et de quotients)

@ Sily x ly n'est pas une forme indéterminée, alors
fl(:v) X fQ(l’) — El X 162.
r——+00

e Si % est bien définie et % n'est pas une forme indéterminée, alors

fi() b

fo(x) wotos by

Exemple

——2—> —2 et e” —>+OO dOﬂC( 2)X€$—>—OO.
T—r+00 T—r+00 T—r+00

™ = - = = T
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[1.4 — Opérations sur les limites

On vient d'énoncer des résultats concernant la limite d'une somme,

d'un produit ou d'un quotient de deux fonctions lorsque x — +oc.

Les résultats analogues sont également valables dans les cas suivants :

@ lorsque x — —0;
@ lorsque x — x, avec xg € R;

@ pour les limites & gauche ou a droite en un point zy € R.
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[1.4 — Opérations sur les limites
Soient f: I — J et g:J — R deux fonctions t.q. g o f est définie.
Soit xq tel que x¢ € I ou x( est une borne de I.

Soit yq tel que yg € J ou 1, est une borne de J.

Lemme (limite de composeées)

Si f(z) —— Yo et 9(y) P ¢ e RU{zxoo} alors g(f(z)) —— E.J

T—>T0
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[1.4 — Opérations sur les limites

Soient f: I — J et g:J — R deux fonctions t.q. g o f est définie.
Soit xq tel que x¢ € I ou x( est une borne de I.

Soit 1, tel que yo € J ou 1, est une borne de J.

Lemme (limite de composeées)
Si f(z) —— yo et gly) —— L € RU{£o0} alors g(f(x)) —— L.
T—T0 Y—yo

T—>T0
4

Exemple
Pour f: 2z +— —7x et g = exp de R dans R, avec zq = +o0.
Ona f(z) = -7 —— —co=yp et g(y) = e —— 0.
T——+00 Y—r—00
Donc g(f(z)) =e™ ™ —0
T—>+00

v
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[1.5 — Théoréemes des gendarmes

Soient a et ¢ € R et trois fonctions f, g et h de [a; +00[ dans R.
Théoréme (des gendarmes)

On suppose que g(x) —+> ¢, que h(x) —+> { et que, pour tout
T—r+00 T—r+00

x € [a;4o00[, on a g(x) < f(x) < h(z). Alors on a f(x) — /.

T—+00

Le résultat analogue lorsque = tend vers —oo ou xg €R est aussi vrai.
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[1.5 — Théoréemes des gendarmes
Soient a et ¢ € R et trois fonctions f, g et h de [a; +00[ dans R.

Théoréme (des gendarmes)

On suppose que g(x) —+> ¢, que h(x) —+> { et que, pour tout
T—>+00 T—>+00

x € [a;4o00[, on a g(x) < f(x) < h(z). Alors on a f(x) — /.

T—+00

Le résultat analogue lorsque = tend vers —oo ou xg €R est aussi vrai.

Exemple
Pour g : z +— —1, h'x|—>letf:xl—>coiﬂde [1; +00[ dans R.
Pour tout z > 1, on a —1 cos(z) < 1donc —1 g @@ 1,
Comme L ——0et—2 ——0,0na cos@) 4.

T—+00 T—+00 T—+00

v
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[1.5 — Théoréemes des gendarmes

10

15

20

Lesgraphesdeg:am—)—%,h:x»—>%etf:1,H>

COs\x
x % sur [1; +oo[.
o P = = DA



[1.5 — Théoréemes des gendarmes

Soient a € R et f et g deux fonctions de [a; +00] dans R.

Théoreme (du gros gendarme)
Sig(x) o oo et, pour tout x € [a;+00[, on a g(x) < f(x),
T—r+00
alors f(x) —— +00.
T—>+00

Si g(x) —— —o0 et, pour tout x € |a;+o0[, on a f(z) < g(x),
T—r—+00

alors f(x) —— —o0.
T—+00

v

Le résultat analogue lorsque = tend vers —oo ou g €R est aussi vrai.
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[1.5 — Théoréemes des gendarmes

Soient a € R et f et g deux fonctions de [a; +00] dans R.

Théoreme (du gros gendarme)
Sig(x) o oo et, pour tout x € [a;+00[, on a g(x) < f(x),
T—r+00
alors f(x) —— +00.
T—>+00

Si g(x) —— —o0 et, pour tout x € |a;+oo[, on a f(z) < g(x),
T—+00

alors f(x) —— —o0.
T—+00

v

Le résultat analogue lorsque x tend vers —oo ou xg €R est aussi vrai.

Exemple

Pourg:xr—>x—1etf:x|—>x+cos(x),onax—1T>+oo.
T—r+00

Pour tout z€R, on a z+cos(z) >x—1, donc x+cos(x) —>+ +00.
T—r+00

™ = = = T
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I1.6 — Retour sur les formes indéterminées

Une forme indéterminée ne signifie pas qu'il n'y a pas de limite. Ca

signifie juste qu'on n'a pas assez d'information pour conclure.

Exemples (de levées d'indétermination)
Soit g : © + —x, on a g(x) —— —oo. Dans les cas suivants, on a
T—+00

f(z) —+> +00 mais on comprend f(x) + g(z) lorsque x — +o0.
Tr—r+00
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I1.6 — Retour sur les formes indéterminées

Une forme indéterminée ne signifie pas qu'il n'y a pas de limite. Ca

signifie juste qu'on n'a pas assez d'information pour conclure.

Exemples (de levées d'indétermination)
Soit g : © + —x, on a g(x) —— —oo. Dans les cas suivants, on a
T—+00

f(x) ——— 400 mais on comprend f(z) + g(x) lorsque z — +o0.

T—+00

o f:x+— x4+ 3. Pour tout z € R, f(z)+g(x) =3 —— 3.

T—r+400
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I1.6 — Retour sur les formes indéterminées

Une forme indéterminée ne signifie pas qu'il n'y a pas de limite. Ca

signifie juste qu'on n'a pas assez d'information pour conclure.

Exemples (de levées d'indétermination)
Soit g : © + —x, on a g(x) —— —oo. Dans les cas suivants, on a
T—+00

f(x) ——— 400 mais on comprend f(z) + g(x) lorsque z — +o0.

T—+00

o f:x+— x4+ 3. Pour tout z € R, f(z)+g(x) =3 —— 3.

T—r+400

o f:x+ 22+ x. Pour tout x € R, f(z) + g(z) = 2> —— +o0.

T——+00
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I1.6 — Retour sur les formes indéterminées

Une forme indéterminée ne signifie pas qu'il n'y a pas de limite. Ca

signifie juste qu'on n'a pas assez d'information pour conclure.

Exemples (de levées d'indétermination)
Soit g : © + —x, on a g(x) —— —oo. Dans les cas suivants, on a
T—+00

f(x) ——— 400 mais on comprend f(z) + g(x) lorsque z — +o0.

T—+00

o f:x+— x4+ 3. Pour tout z € R, f(z)+g(x) =3 —— 3.

T—r+400

o f:x+ 22+ x. Pour tout x € R, f(z) + g(z) = 2> —— +o0.

T——+00

e f:x+— x+cos(z). On a f+g = cos, qui n'a pas de limite en +oc0.
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I1.6 — Retour sur les formes indéterminées

Exemple
Pour z > 0, on a :

3
2% —6r+4 = 22> ><<1——+—>
N———

forme indéterminée en +oco
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I1.6 — Retour sur les formes indéterminées

Exemple

Pour z > 0, on a :

3 2
27° —6x+4 = 22° x(l——+—2 — +00.
N——— N—— T T 2—+00
forme indéterminée en +oco mﬂroo ~ e _
"
Tr—r+00
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I1.6 — Retour sur les formes indéterminées

Exemple
Pour x > 0, on a :

3 2
22% — 6x + 4 = 21> x<1——+;) — +00.

e T—+00
forme indéterminée en +oco erOO N ~e _
—1
x—+o00 )

Lemme (limites des polynémes a l'infini)

Soient d € N et ag,...,ay € R avec ag # 0.

Le polynéme P : x + agx® + ag_12% ' + -« + a1x + aq Vérifie :
lim P(z) = lim ag2®

lim P(z) = lim ag® et
T—+00 Tr—r+00 T——00 T——00

v
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I1.6 — Retour sur les formes indéterminées

Lemme (limites des fractions rationnelles a I'infini)
Soient p,q € N et ag,...,a,, by, ..., by € R aveca, # 0 et b, # 0.

apZ? + -+ - + a1 + ag

quq—l—'“—i-blx—l—bo
privé d'un nombre fini de points. De plus,

La fonction [ : x +— est bien définie sur R

. o apxP . G
a:EI—iI-loo f(x> o xEI-II—loo quq et xll}l}loo f(ﬂ?) o xglzloo quq ’
Exemple
2
02 i 3% 2 — .

im 3 S im 5
z—+00 22° — 6 z—+o0 20 z—+o00 21
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I1.6 — Retour sur les formes indéterminées

Lemme (comparaison des puissances a |'exponentielle)

a
Pour tout a > 0, on a 2% % =% ——— (.
€ 400

L 'exponentielle I'emporte sur les fonctions puissances.

Lemme (comparaison des puissances au logarithme)

oot et z%In(z) —— 0~.

Pour tout a > 0, on aj
(35) z—0t

Les fonctions puissances |'emportent sur le logarithme.
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Il — Etudes de fonctions

1. To do list de I'étude de fonction

2. Etude de la fonction f : z +— ﬁ
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1.1 — To do list de |'étude de fonction

Considérons une fonction f : x — f(x), définie par une formule sans

précision du domaine de définition. Faire I'étude de f c'est :

@ déterminer le domaine de définition de f, c'est-a-dire I'ensemble
Dy des x € R tels que la formule f(x) a du sens;
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1.1 — To do list de |'étude de fonction

Considérons une fonction f : x — f(x), définie par une formule sans
précision du domaine de définition. Faire I'étude de f c'est :

@ déterminer le domaine de définition de f, c'est-a-dire I'ensemble
Dy des x € R tels que la formule f(x) a du sens;

@ déterminer le domaine de dérivabilité de f (penser a x — |z|);

© calculer f’ et dresser son tableau de signes;
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I11.1 — To do list de I'étude de fonction

Considérons une fonction f : x — f(x), définie par une formule sans

précision du domaine de définition. Faire |'étude de f cest :

@ déterminer le domaine de définition de f, c'est-a-dire I'ensemble
Dy des x € R tels que la formule f(x) a du sens;

@ déterminer le domaine de dérivabilité de f (penser a x — |z|);
© calculer f’ et dresser son tableau de signes;

@ en déduire le tableau de variations de f et le compléter avec les

éventuelles valeurs remarquables et limites aux bornes de f(z);

© dessiner I'allure du graphe de f.
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1.2 — Etude de la fonction f : x e

Domaine de définition

In n'est défini que sur |0; +oo[. Siz > 0,onaln(z) =0 < z =1.
Si z €]0; 1[U]1; 00| alors In(z) est défini et non nul, donc f(z) est
bien défini. Sinon f(z) n'a pas de sens. Donc Dy =]0; 1[U]1; +o0].
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1.2 — Etude de la fonction f : x ln'@,)

Domaine de définition

In n'est défini que sur |0; +oo[. Siz > 0,onaln(z) =0 < z =1.
Si z €]0; 1[U]1; 00| alors In(z) est défini et non nul, donc f(z) est
bien défini. Sinon f(z) n'a pas de sens. Donc Dy =]0; 1[U]1; +o0]. )

Dérivée
x — x et In sont dérivables sur Dy, donc f aussi. Pour tout z € Dy,
Ixn(z)—azxWn'(z) In(z)—zxi In(z)-1

o=@y~ G@F W@F

Comme In est strictement croissante sur |0; +oo[ et In(e) =1, on a
In(x) <1sizel0;efetn(z)>1siz>e.

v
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1.2 — Etude de la fonction f : x e

x 0 1 e +0o0
In(z) — - - 0+
(1 (x))2 + 0 + +
In(z)—1 :
f'(x)= (hg( B - - 0 +

Limites et valeurs particuliéres

v

= =
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1.2 — Etude de la fonction f : x e

T 0 1 e 400
In(z) — - - 0 +
(1 (x))2 + 0 + +
fl(z)= I(TIE? ))% — - 0 +
x 0~
= ~ ~,

— € . f —
fle) = m(g = ¢ Par ailleurs, In(x) — —%, donc & —7 0

v
>

=) = =
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I11.2 — Etude de la fonction f : z — &
In(x)
x 0 1 e +00
In(z) — — - 0 +
(1 (x))2 + 0 + +
In(z)—1
f'(x)= (115( B - - 0 +
fw=— | | :
T) =
(o) W o \ e /
Limites et valeurs particuliéres
fle) = m(g = ¢ Par ailleurs, In(x) — —%, donc & —7 0.
In(z) —— 07, donc 7= —— —o0. De méme, — 4-00.
x—1- () z—1- ln(m) z—1t

v
>

=
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I11.2 — Etude de la fonction f : z

In(x)

x 0 1 e +00
In(z) — - - 0 +
(1 (x))2 + 0 + +
In(z)—1
F'(@)= TGy - R
T 0~ + 00
) =
f( ) ln(m) N e \ . /
Limites et valeurs particuliéres
— € — i —
fle) = m(g = ¢ Par ailleurs, In(x) — —%, donc & —7 0
In(z) —— 07, donc 7= —— —o0. De méme, 7= —— +4-00.
x—1- ( ) z—1- n(w) z—1t
Les fonctions puissances I'emportent sur In, donc - ( ) —+> +00.
T—r+00

v
A=l

=
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I11.2 — Etude de la fonction f : z

xr

In(x)

21

‘ =) & - = 9Dace
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IV — Continuité

1. Fonctions continues

2. Quelques propriétés des fonctions continues
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V.1 — Fonctions continues

Soient [ un intervalle et f : I — R une fonction.
Définition (continuité)

Soit zy € I, on dit que f est continue en z; si f(z) —— f(xg).
T—T0

On dit que f est continue sur [ si elle est continue en tout xy € I.
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I\VV.1 — Fonctions continues

Soient [ un intervalle et f : I — R une fonction.
Définition (continuité)

Soit zy € I, on dit que f est continue en z; si f(z) —— f(xg).
T—T0

On dit que f est continue sur [ si elle est continue en tout xg € I.

@ Les fonctions usuelles (et toutes les fonctions rencontrées jusqu'ici)

sont continues sur chaque intervalle de leur domaine de définition.

@ Les sommes, produits, quotients, composées de fonctions continues
sont continues partout ou elles sont définies.
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V.1 — Fonctions continues

_ 0 six<O0, | :
La fonction H : z +— n'est pas continue en 0. En effet,
1 six >0,
H(z) —— 0 et H(z) —— 1.
z—0~ z—0t

Donc H(x) n'a pas de limite lorsque = — 0.
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V.1 — Fonctions continues

0 siz<0,

La fonction H : x — n'est pas continue en 0. En effet,
1 six >0,
H(z) —— 0 et H(z) —— 1.
z—0~ z—0t

Donc H(x) n'a pas de limite lorsque = — 0.

{y = H(x)}

Si I est un intervalle et f : I — R est continue, alors le graphe de f }

n'a qu'une seule composante : on peut le tracer sans lever le stylo.
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V.1 — Fonctions continues
Soient [ un intervalle et f : I — R une fonction.

Lemme (dérivable implique continue)

Si f est dérivable en xq € I, alors elle est continue en x. J

Preuve : pour tout z € I\ {zo} on a

f(x):f(%)—l-(a:—xo)M

T — 2o
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V.1 — Fonctions continues
Soient [ un intervalle et f : I — R une fonction.

Lemme (dérivable implique continue)

Si f est dérivable en xq € I, alors elle est continue en x. J

Preuve : pour tout z € I\ {zo} on a

F(@) = flao) + (0 —ap) PO TI@) gy

20
2o’ ——f(a)
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V.1 — Fonctions continues

Soient [ un intervalle et f : I — R une fonction.

Lemme (dérivable implique continue)

Si f est dérivable en xq € I, alors elle est continue en x.

Preuve : pour tout z € I\ {zo} on a

F(@) = flao) + (0 —ap) PO TI@) gy

0’ —— ()

La réciproque est fausse

La fonction = +— +/x est continue mais pas dérivable en 0 : si x > 0,
V=0 _ f 1
on a —0 \/5 E) —+00.

= =y = =
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V.2 — Quelques propriétés des fonctions continues
Soient a et b € R t.q. a < bet f: [a;b] — R une fonction continue.
Théoréeme (existence du maximum et du minimum)

La fonction f admet un min et un max sur [a;b]. C'est-a-dire, il existe
xy et xy € [a;b] tels que, pour tout = € [a;b], f(z1) < f(z) < f(z2).
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V.2 — Quelques propriétés des fonctions continues
Soient a et b € R t.q. a < bet f: [a;b] — R une fonction continue.
Théoréeme (existence du maximum et du minimum)

La fonction f admet un min et un max sur [a;b]. C'est-a-dire, il existe
xy et xy € [a;b] tels que, pour tout = € [a;b], f(z1) < f(z) < f(z2).

Théoréeme (des valeurs intermédiaires)
Si f(a)<0< f(b) ou f(a)>0> f(b), il existe xy€]a;b] t.q. f(xo):O.J
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