Riemannian submanifolds

Exercise 1. Let (M, g) be a Riemannian manifold and let $f : M \to \mathbb{R}$ be a smooth map. We assume that f vanishes transversally, that $d_x f \neq 0$ whenever f(x) = 0. Let us denote by Z the hypersurface $f^{-1}(0)$ and by II its second fundamental form.

- 1. Show that for any $x \in Z$, $d_x f \circ II_x = -\nabla_x^2 f_{|T_x Z}$.
- 2. Express II only in terms of f.

Exercise 2. Recall that if (M, g) is a Riemannian surface, then its Gauss curvature at p is $\kappa(p) = K(T_pM)$, the sectional curvature of T_pM .

- 1. Is there a metric g on \mathbb{S}^2 such that κ takes a negative value at some point?
- 2. Is there a metric g on the torus \mathbb{T}^2 such that κ does not vanish?
- 3. Is there a 2-dimensional submanifold (without boundary) M of \mathbb{R}^3 such that κ vanishes everywhere?
- 4. Same question assuming that M is not a plane.
- 5. Same question assuming that M is compact without boundary. (*Hint:* Use Sard's theorem: the set of critical values of a smooth map between smooth manifolds has measure 0.)
- 6. Is there a compact surface without boundary M in \mathbb{R}^3 such that κ is negative everywhere?