Curvatures

Exercise 1. Let (M, g) be a Riemannian manifold of dimension n.

- 1. If n = 1, what is its curvature?
- 2. If n = 2, how many degrees of freedom are there in the Riemann tensor? Give the expression in local coordinates of the Riemann, Ricci and scalar curvature of M.
- 3. How many degrees of freedom are there in the Riemann tensor for n = 3 and n = 4.

Exercise 2. Compute the Riemann, Ricci and scalar curvatures of the following Riemannian manifolds with their standard metric.

1. \mathbb{R}^n 2. \mathbb{T}^n 3. \mathbb{S}^n 4. \mathbb{D} with $g_{\mathbb{D}} = \frac{4}{(1-||x||^2)^2} \langle \cdot, \cdot \rangle$.

Exercise 3. 1. Compute the sectional curvature of \mathbb{S}^n_{ρ} , the Euclidean sphere of radius ρ .

2. Compute the sectional curvature of $(\mathbb{D}, g_{\mathbb{D}})$.

Exercise 4 (Positive versus negative curvature). 1. Let N denote the North pole of \mathbb{S}^2 .

- (a) For $\rho \in (0, \pi)$, compute the volume of the geodesic ball $B(N, \rho)$. How does it compare to the volume of the ball of radius ρ in \mathbb{R}^2 ?
- (b) Compute the length of the circle $C(N, \rho)$. When ρ is small enough, how does it compare to its Euclidean analogue?
- (c) Let γ_1 and γ_2 be two geodesics on \mathbb{S}^2 such that $\gamma_i(0) = N$. We denote $v_i = \gamma'_i(0)$ and assume that $||v_i|| = 1$. What is the distance between $\gamma_1(t)$ and $\gamma_2(t)$ for $t \in (-\pi, \pi)$?
- (d) When t is small, how does this distance compare to its Euclidean counterpart?
- 2. Same questions around 0 in the Poincaré disc \mathbb{D} , for ρ small.

Exercise 5. Let us consider normal coordinates (x^1, \ldots, x^n) around some point p in a Riemannian manifold (M, g). Let us denote as usual (g_{ij}) the matrix of g in these coordinates, (Γ_{ij}^k) the Christoffel symbols of the Levi–Civita connection and (R_{ijkl}) the components of the Riemann tensor (as a $\binom{4}{0}$ -tensor). We admit that the following holds in these coordinates:

$$\forall i, j \in \{1, \dots, n\}, \qquad g_{ij}(x) = \delta_{ij} - \frac{1}{3} \sum_{1 \le k, l \le n} R_{iklj}(0) x^k x^l + O(||x||^3).$$

- 1. Give a two terms expansion of the Riemannian volume dV around 0 in these coordinates.
- 2. Give a two terms expansion of the volume of the geodesic ball of center p and radius ρ as $\rho \to 0$.