## Tensor fields

Exercise 1. Let $E$ and $E^{\prime}$ be two smooth vector bundles over the same base space $M$. Let $F: \Gamma(E) \rightarrow \Gamma\left(E^{\prime}\right)$ be a $\mathcal{C}^{\infty}(M)$-linear map.

1. Prove that there exists a unique $f: E \rightarrow E^{\prime}$ which is a bundle map over $M$ (that is, for any $\left.x \in M, f_{\mid E_{x}} \in \operatorname{End}\left(E_{x}, E_{x}^{\prime}\right)\right)$ and satisfies:

$$
\begin{equation*}
\forall s \in \Gamma(E), \forall x \in M, \quad F(s)(x)=f(s(x)) \tag{1}
\end{equation*}
$$

2. Check that $f$ can be seen as an element of $\Gamma\left(E^{*} \otimes E^{\prime}\right)$.
3. Conversely, check that a section $f \in \Gamma\left(E^{*} \otimes E^{\prime}\right)$ defines a unique $\mathcal{C}^{\infty}(M)$-linear map $F: \Gamma(E) \rightarrow \Gamma\left(E^{\prime}\right)$ satisfying (1).

Remark. In other terms we have defined a canonical isomorphism of $\mathcal{C}^{\infty}(M)$-modules between $\operatorname{Hom}\left(\Gamma(E), \Gamma\left(E^{\prime}\right)\right)$ and $\Gamma\left(E^{*} \otimes_{\mathbb{R}} E^{\prime}\right)$.
Similarly, we can show that $s \otimes s^{\prime} \mapsto\left(x \mapsto s(x) \otimes s^{\prime}(x)\right)$ defines a canonical isomorphism of $\mathcal{C}^{\infty}(M)$-modules from $\Gamma(E) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma\left(E^{\prime}\right)$ to $\Gamma\left(E \otimes_{\mathbb{R}} E^{\prime}\right)$. For example, $\Gamma\left(\bigwedge^{k} T^{*} M \otimes_{\mathbb{R}} E\right)$ is isomorphic to $\Omega^{k}(M, E):=\Omega^{k}(M) \otimes_{\mathcal{C}}{ }^{\infty}(M) \Gamma(E)$, the space of $k$-forms with values in $E$.

Exercise 2. Let $\nabla$ be a connection on a smooth vector bundle $E \rightarrow M$. We can see $\nabla$ as a map from $\Omega^{0}(M, E)$ to $\Omega^{1}(M, E)$. We extend $\nabla: \Omega^{k}(M, E) \rightarrow \Omega^{k+1}(M, E)$ by forcing the Leibniz rule:

$$
\forall \alpha \in \Omega^{k}(M), \forall s \in \Gamma(E), \forall x \in M \quad \nabla_{x}(\alpha \otimes s)=d_{x} \alpha \otimes s(x)+(-1)^{k} \alpha_{x} \wedge \nabla_{x} s
$$

and $\mathbb{R}$-linearity.

1. Prove that $\nabla \circ \nabla$ is $\mathcal{C}^{\infty}(M)$-linear from $\Omega^{0}(M, E)$ to $\Omega^{2}(M, E)$.
2. Using the previous exercise, show that $\nabla \circ \nabla$ defines a section $R \in \Omega^{2}(M, \operatorname{End}(E))$. We call $R$ the curvature of $(E, \nabla)$.
3. Let $\left(x_{1}, \ldots, x_{n}\right)$ be local coordinates on $M$ and $\left(e_{1}, \ldots, e_{r}\right)$ be a local frame for $E$ defined on the same open set $U$. We denote by $\left(\Gamma_{i j}^{k}\right)$ the Christoffel symbols of $\nabla$ in these coordinates. We also define $\left(R_{i j k}^{l}\right)$ by:

$$
\forall i, j, k \in\{1, \ldots, n\}, \quad R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) e_{k}=\sum_{l=1}^{n} R_{i j k}^{l} e_{l}
$$

Check that for any $i, j \in\{1, \ldots, n\}$ and any $k, l \in\{1, \ldots, r\}$ we have:

$$
\begin{equation*}
R_{i j k}^{l}=\frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}}-\frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}}+\sum_{m=1}^{r} \Gamma_{j k}^{m} \Gamma_{i m}^{l}-\sum_{m=1}^{r} \Gamma_{i k}^{m} \Gamma_{j m}^{l} \tag{2}
\end{equation*}
$$

4. Check that for any $X, Y \in \Gamma(T M)$ and any $s \in \Gamma(E)$ we have:

$$
\nabla_{X}\left(\nabla_{Y} s\right)-\nabla_{Y}\left(\nabla_{X} s\right)-\nabla_{[X, Y]} s=R(X, Y) s
$$

Remark. In particular, if $\nabla$ is the Levi-Civita connection of $(M, g)$ then $R$ is its Riemann curvature. Equation (2) is of course valid in this case.

