Geodesics

Let $\left(x_{1}, \ldots, x_{n}\right)$ be local coordinates on an open subset of a Riemannian manifolds (M, g), let $\left(g_{i j}(x)\right)$ denote the matrix of g in these coordinates and let $\left(g^{i j}(x)\right)$ denote its inverse. Let $\left(\Gamma_{i j}^{k}(x)\right)$ denote the Christoffel symbols associated with the Levi-Civita connection of (M, g) in these coordinates. We recall that, for any i, j and $k \in\{1, \ldots, n\}$:

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l=1}^{n} g^{k l}\left(\frac{\partial g_{i l}}{\partial x_{j}}+\frac{\partial g_{j l}}{\partial x_{i}}-\frac{\partial g_{i j}}{\partial x_{l}}\right)
$$

Exercise 1 (Image of a geodesic). Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds and let $f: M_{1} \rightarrow M_{2}$ be a smooth map.

1. If f is an isometric diffeomorphism, is the image of a geodesic of M_{1} a geodesic of M_{2} ?
2. Same question if f is a conformal diffeomorphism.
3. Same question if f is an isometric embedding.

Definition. Let (M, g) be a Riemannian manifold. We say that two maximal geodesics are parallel if they are either disjoint or equal up to reparametrization.

Exercise 2 (Model spaces). 1. Let us consider \mathbb{R}^{n} with is canonical Euclidean metric.
(a) What are the geodesics?
(b) Compute the exponential map at any point $p \in \mathbb{R}^{n}$.
(c) What is its injectivity radius?
(d) Are there closed geodesics?
(e) Are all geodesics closed?
(f) Is the image of a geodesic a submanifold of the ambient space?
(g) Let γ be a geodesic and let $p \in \mathbb{R}^{n} \backslash \operatorname{Im}(\gamma)$. How many geodesics passing through p and parallel to γ are there?
2. Let $\alpha_{1}, \ldots, \alpha_{n}>0$, same questions for $\mathbb{T}_{\alpha}^{n}=\mathbb{R}^{n} /\left(\alpha_{1} \mathbb{Z} \oplus \cdots \oplus \alpha_{n} \mathbb{Z}\right)$ with the metric induced by the Euclidean one on \mathbb{R}^{n}.
3. Same questions on \mathbb{S}^{n} with the metric induced by the Euclidean one on \mathbb{R}^{n+1}.
4. Same questions on the Poincaré disc \mathbb{D} with the metric $g_{\mathbb{D}}:=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)$
5. Same questions on the upper half-plane \mathbb{H} with the metric $g_{\mathbb{H}}:=\frac{1}{y^{2}}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)$.

Exercise 3 (Normal coordinates). Let (M, g) ba a Riemannian manifold and let $p \in M$.

1. Can we find local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ centered at p such that the matrix $\left(g_{i j}(x)\right)$ of g in these coordinates satisfies $\left(g_{i j}(x)\right)=I_{n}+O(\|x\|)$, where I_{n} is the identity matrix of size n ? Don't forget to make sense of the $O(\|x\|)$.
2. Show that in the normal coordinates centered at p we have: $\left(g_{i j}(x)\right)=I_{n}+O\left(\|x\|^{2}\right)$, and $\Gamma_{i j}^{k}(x)=O(\|x\|)$ for any i, j and k.
3. Can we do better? $\left(I_{n}+O\left(\|x\|^{3}\right)\right.$, constant equal to $\left.I_{n}, \ldots\right)$
