More connections

Exercise 1 (Derivatives at a vanishing point). Let $E \rightarrow M$ be a vector bundle and let ∇ and $\widetilde{\nabla}$ be two connections on E. Let $s \in \Gamma(E)$ and $x \in M$ be such that $s(x)=0$. Compare $\nabla_{x} s$ and $\widetilde{\nabla}_{x} s$.

Exercise 2. Let $E \rightarrow M$ be a vector bundle eqquiped with a connection ∇. Let $x_{0} \in M$ and $y \in E_{x_{0}}$, is there a local (resp. global) section $s \in \Gamma(E)$ such that $s\left(x_{0}\right)=y$ and $\nabla_{x_{0}} s=0$?

Exercise 3. Let s be a smooth section of the vector bundle $E \rightarrow M$ and let $x_{0} \in M$. Is there a connection ∇ on E such that ∇s vanishes on some neighborhood of x_{0} in M ?

Exercise 4 (Christoffel symbols). 1. Let (M, g) be a Riemannian manifold. We denote by $\left(x_{1}, \ldots, x_{n}\right)$ local coordinates on a open subet U of M and by $G=\left(g_{i j}\right)$ the matrix of g in these coordinates. Let $\left(g^{k l}\right)$ denote the coefficients of G^{-1}. Check that the Christoffel symbols $\left(\Gamma_{i j}^{k}\right)_{1 \leqslant i, j, k \leqslant n}$ of the Levi-Civita connection ∇ of (M, g) are symmetric in (i, j). Prove that for any $i, j, k \in\{1, \ldots, n\}$ we have:

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l=1}^{n} g^{k l}\left(\frac{\partial g_{i l}}{\partial x_{j}}+\frac{\partial g_{j l}}{\partial x_{i}}-\frac{\partial g_{i j}}{\partial x_{l}}\right) .
$$

2. Recall that the half-plane model of the hyperbolic plane is $\mathbb{H}^{2}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ endowed with the metric $g_{(x, y)}:=\frac{1}{y^{2}}(\mathrm{~d} x \otimes \mathrm{~d} x+\mathrm{d} y \otimes \mathrm{~d} y)$. Compute the covariant derivatives of $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ for the Levi-Civita connection.
3. Recall that the Poincare disc is the unit open disc $\mathbb{D}^{2} \subset \mathbb{R}^{2}$ endowed with the metric $g_{(x, y)}:=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}(\mathrm{~d} x \otimes \mathrm{~d} x+\mathrm{d} y \otimes \mathrm{~d} y)$. Compute the covariant derivatives for the LeviCivita connection of the vector fields $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$ associated with the polar coordinates on $\mathbb{D}^{2} \backslash\{0\}$.
