Connections

Exercise 1 (Warm-up). Let g_{0} denote the Euclidean metric of \mathbb{R}, we define another Riemannian metric g on \mathbb{R} by $g_{x}:=e^{-x^{2}}\left(g_{0}\right)_{x}$ for any $x \in \mathbb{R}$. Let ∇_{0} (resp. ∇) denote the Levi-Civita connection on $T \mathbb{R}$ associated with g_{0} (resp.g). Compute $\left(\nabla_{0}\right) \frac{\partial}{\partial x}$ and $\nabla \frac{\partial}{\partial x}$.

Exercise 2 (Dual connection). Let ∇ be a connection on a vector bundle $E \rightarrow M$. We still denote by ∇ the induces connections on bundles of the form $E \otimes \cdots \otimes E \otimes E^{*} \otimes \cdots \otimes E^{*} \rightarrow M$.

1. Compute $d(\alpha(X))$ where $\alpha \in \Gamma\left(E^{*}\right)$ and $X \in \Gamma(E)$.
2. Compute ∇ Id where Id : $x \mapsto \operatorname{Id}_{E_{x}}$ is a section of $\operatorname{End}(E) \rightarrow M$.

Exercise 3 (Hessian and torsion). Let M be a manifold and let $f: M \rightarrow \mathbb{R}$ be smooth.

1. In a chart (U, φ), we can compute the second diffenrential of $f_{\varphi}:=f \circ \varphi^{-1}$. How do chart transitions act on $D^{2} f_{\varphi}$? Can we define an intrinsic notion of second differential of f that would read as $D^{2} f_{\varphi}$ in the chart (U, φ), for any such chart?
2. Let us now assume that $T M$ is endowed with a connection ∇. Let $\nabla^{2} f$ be the section of $T^{*} M \otimes T^{*} M$ defined by:

$$
\forall x \in M, \forall u, v \in T_{x} M, \quad \nabla_{x}^{2} f(u, v):=\left(\nabla_{u}(d f)\right) \cdot v
$$

Let X and Y be two vectors fields on M, prove that $\nabla^{2} f(X, Y)=X \cdot(Y \cdot f)-\left(\nabla_{X} Y\right) \cdot f$.
3. Give an necessary and sufficient condition on ∇ ensuring that, for all $f \in \mathcal{C}^{\infty}(M)$, for all $x \in M, \nabla_{x}^{2} f$ is symmetric.

