Connections

Exercise 1 (Warm-up). Let g_0 denote the Euclidean metric of \mathbb{R} , we define another Riemannian metric g on \mathbb{R} by $g_x := e^{-x^2}(g_0)_x$ for any $x \in \mathbb{R}$. Let ∇_0 (resp. ∇) denote the Levi–Civita connection on $T\mathbb{R}$ associated with g_0 (resp. g). Compute $(\nabla_0)\frac{\partial}{\partial x}$ and $\nabla \frac{\partial}{\partial x}$.

Exercise 2 (Dual connection). Let ∇ be a connection on a vector bundle $E \to M$. We still denote by ∇ the induces connections on bundles of the form $E \otimes \cdots \otimes E \otimes E^* \otimes \cdots \otimes E^* \to M$.

- 1. Compute $d(\alpha(X))$ where $\alpha \in \Gamma(E^*)$ and $X \in \Gamma(E)$.
- 2. Compute ∇ Id where Id : $x \mapsto \text{Id}_{E_x}$ is a section of $\text{End}(E) \to M$.

Exercise 3 (Hessian and torsion). Let M be a manifold and let $f: M \to \mathbb{R}$ be smooth.

- 1. In a chart (U, φ) , we can compute the second differential of $f_{\varphi} := f \circ \varphi^{-1}$. How do chart transitions act on $D^2 f_{\varphi}$? Can we define an intrinsic notion of second differential of f that would read as $D^2 f_{\varphi}$ in the chart (U, φ) , for any such chart?
- 2. Let us now assume that TM is endowed with a connection ∇ . Let $\nabla^2 f$ be the section of $T^*M \otimes T^*M$ defined by:

$$\forall x \in M, \ \forall u, v \in T_x M, \quad \nabla_x^2 f(u, v) := (\nabla_u(df)) \cdot v.$$

Let X and Y be two vectors fields on M, prove that $\nabla^2 f(X,Y) = X \cdot (Y \cdot f) - (\nabla_X Y) \cdot f$.

3. Give an necessary and sufficient condition on ∇ ensuring that, for all $f \in \mathcal{C}^{\infty}(M)$, for all $x \in M$, $\nabla_x^2 f$ is symmetric.