Vector bundles

Exercise 1. Let M be a smooth manifold. What are the global sections of $M \times \mathbb{R}^{k} \rightarrow M$, $T M \rightarrow M$ and $\bigwedge^{k} T^{*} M \rightarrow M$?

Exercise 2 (Frames). Let $E \rightarrow M$ be a smooth vector bundle of rank k. A local frame for E over the open subset $U \subset M$ is a family $\left(s_{1}, \ldots, s_{k}\right)$ of smooth sections of $E_{\mid U} \rightarrow U$ such that, for any $x \in U,\left(s_{1}(x), \ldots, s_{k}(x)\right)$ is a basis of the fiber E_{x}.

1. Check that it is equivalent to give a local frame for E over U or a local trivialization $E_{\mid U} \simeq U \times \mathbb{R}^{k}$.
2. Give a necessary and sufficient condition on global sections of $E \rightarrow M$ for this bundle to be trivial.
3. Is $T \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ trivial? Is $T \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ trivial?
4. Does any smooth vector bundle admit a non-zero smooth section? A non-vanishing smooth section?

Exercise 3 (Pullback). 1. Is the pullback of a trivial vector bundle trivial?
2 . Let $\pi: \mathbb{S}^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ be the canonical projection, compare $T \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ and $\pi^{*}\left(T \mathbb{R} \mathbb{P}^{n}\right) \rightarrow \mathbb{S}^{n}$.
Exercise 4 (Sub-bundles). Let $E \rightarrow M$ be a smooth vector bundle of rank r and let $V \subset E$. We say that $V \rightarrow M$ is a sub-bundle of $E \rightarrow M$ of rank k if, for any $x \in M$, there exists a local trivialization $\phi: E_{\mid U} \simeq U \times \mathbb{R}^{r}$ of E over a neighborhood U of x such that:

$$
\phi\left(E_{\mid U} \cap V\right)=U \times\left(\mathbb{R}^{k} \times\{0\}\right)
$$

1. Check that a sub-bundle of a smooth vector bundle is a smooth vector bundle.
2. Let N be a smooth submanifold of M and let $i: N \rightarrow M$ be the inclusion. Is $T N$ a sub-bundle of $i^{*}(T M)$?

Exercise 5 (Group of line bundles). 1. Let $L \rightarrow M$ be a line bundle on a smooth manifold, is $L \otimes L^{*} \rightarrow M$ trivial?
2. Define an abelian group structure on the set of line bundles over M up to isomorphism.

Exercise 6 (Tautological line bundle). Let $J=\left\{(D, x) \in \mathbb{R P}^{n} \times \mathbb{R}^{n+1} \mid x \in D\right\}$, we say that $J \rightarrow \mathbb{R} \mathbb{P}^{n}$ is the tautological line bundle over $\mathbb{R P}^{n}$.

1. Check that J is a sub-bundle of $\mathbb{R P}^{n} \times \mathbb{R}^{n+1}$ of rank 1 . Is it trivial?
2. Let $L=J^{*}$, check that an homogeneous polynomial P of degree d in $(n+1)$ variables defines a global section of $L^{\otimes d} \rightarrow \mathbb{R P}^{n}$.
3. For which $d \in \mathbb{Z}$ is $L^{\otimes d} \rightarrow \mathbb{R P}^{n}$ trivial?

Exercise 7 (Line bundles on the sphere). 1. What are the line bundles over \mathbb{S}^{1} up to isomorphism? Which one is $T \mathbb{S}^{1}$?
2. Describe the group structure defined in exercise 5 when $M=\mathbb{S}^{1}$.

3 . What are the line bundles over \mathbb{S}^{n} up to isomorphism when $n \geqslant 2$?

