Geometric meaning of connections

Definition. A metric on a vector bundle $E \rightarrow M$ is a section $h \in \Gamma\left(E^{*} \otimes E^{*}\right)$ such that, for all $x \in M, h_{x}$ is an inner product on E_{x}.
Definition. A connection ∇ on a vector bundle $E \rightarrow M$ eqquiped with a metric h is said to be compatible with h if, for any $s_{1}, s_{2} \in \Gamma(E), d h\left(s_{1}, s_{2}\right)=h\left(\nabla s_{1}, s_{2}\right)+h\left(s_{1}, \nabla s_{2}\right)$.

In the sequel, let $p: E \rightarrow M$ be a rank r vector bundle and let n denote the dimension of M.
Definition. For any $y \in E$, we denote $V_{y}=\operatorname{ker} d_{y} p$. Then, $V \rightarrow E$ is a rank r sub-bundle of $T E \rightarrow E$ and is called the vertical sub-bundle of $T E$.

Definition. An horizontal sub-bundle of $T E$ is a sub-bundle $H \rightarrow E$ of $T E \rightarrow E$ such that, for any $y \in E, H_{y} \otimes V_{y}=T_{y} E$.
Remarks. - Note that H has rank n and that for any $y \in E, V_{y}=T_{y}\left(E_{x}\right)$ is canonically isomorphic to E_{x}, where $x=p(y)$.

- In the literature, horizontal sub-bundles are called Ehresmann connections, we don't use this terminology in order to avoid confusing horizontal sub-bundles with connections (in the sense of the course).

For any $\lambda \in \mathbb{R}$, let $M_{\lambda}: E \rightarrow E$ denote the fiberwise multiplication by λ.
Let $\Delta: M \rightarrow M \times M$ be defined by $\Delta(x)=(x, x)$. Then $\Delta^{*}(E \times E) \rightarrow M$ is the space

$$
\left\{\left(x, y, y^{\prime}\right) \in M \times E \times E \mid p(y)=x=p\left(y^{\prime}\right)\right\} \simeq\left\{\left(y, y^{\prime}\right) \in E \times E \mid p(y)=p\left(y^{\prime}\right)\right\}
$$

with the natural projection. We denote by $A: \Delta^{*}(E \times E) \rightarrow E$ the fiberwise addition of E.
Definition. We say that an horizontal sub-bundle H of $T E$ is linear if:

- for any $y, y^{\prime} \in E$ such that $p(y)=p\left(y^{\prime}\right)$ we have:

$$
d_{\left(y, y^{\prime}\right)} A\left(\left(H_{y} \times H_{y^{\prime}}\right) \cap T_{\left(y, y^{\prime}\right)} \Delta^{*}(E \times E)\right)=H_{A\left(y, y^{\prime}\right)}
$$

- for any $\lambda \in \mathbb{R}$ and $y \in E$ we have $d_{y} M_{\lambda}\left(H_{y}\right)=H_{M_{\lambda}(y)}$.

The main goal of the following exercise is to prove that the choice of a linear horizontal sub-bundle of $T E$ is equivalent to the choice of a connection on E.

Exercise 1. Let $p: E \rightarrow M$ be a vector bundle of rank r on a n-dimensional basis.

1. Let $H \rightarrow E$ be a linear horizontal sub-bundle of $T E$. Define a connection ∇ on E associated with H.
Hint: consider the projection onto V_{y} along H_{y}.
2. Conversely, assume that E is eqquiped with a connection ∇. Define a linear horizontal sub-bundle H of $T E$ associated with ∇.
Hint: consider the image of $d_{x} s$, where $s \in \Gamma(E)$ is such that $\nabla_{x} s=0$.
3. Recall that if $s(x)=0$ then $\nabla_{x} s$ does not depend on ∇. What does it mean in terms of the associated linear horizontal sub-bundles?
4. Let h be a metric on E and let ∇ be a connection on E compatible with h. What does it mean for the associated linear horizontal sub-bundle?
