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Geometric meaning of connections (Solution)

1. Let x ∈ M and y ∈ Ex, we denote by Πy the projection onto Vy along Hy in TyE. For
any s ∈ Γ(E), we define ∀x ∈ M , ∇xs := Πs(x)(dxs). We have ∇xs : TxM → Vy ' Ex,
hence ∇s ∈ Γ(T ∗M ⊗ E) and ∇ : Γ(E) → Γ(T ∗M ⊗ E). Let us check that ∇ is a
connection.

Homogeneity. Let λ ∈ R and s ∈ Γ(E). Let x ∈ M , we denote y = s(x), we have
dxs = ∇xs + (dxs −∇xs) with ∇xs taking values in Vy and (dxs −∇xs) taking values
in Hy. We have

dx(λs) = dx(Mλ ◦ s) = dyMλ ◦ dxs = dyMλ(∇xs) + dyMλ(dxs−∇xs).

We assumed that dyMλ(Hy) = Hλy, hence dyMλ(dxs−∇xs) takes values inHλy. Besides,
p◦Mλ = p, hence dλyp◦dyMλ = dyp, and dyMλ(Vy) = dyMλ(ker dyp) ⊂ ker dλyp = Vλy.
In fact dλyp ◦ dyMλ = Vλy by a dimension argument. Thus dyMλ(∇xs) takes values in
Vλy and we have ∇x(λs) = dyMλ(∇xs).
Recall that Vy ' Ex ' Vλy canonically, and under this identification dyMλ is the multi-
plication by λ in Ex. Thus ∇x(λs) = λ∇xs.

Additivity. Now, let s1, s2 ∈ Γ(E), let x ∈ M , we denote y1 = s1(x) and y2 = s2(x).
We have:

dx(s1 + s2) = dx(A ◦ (s1, s2)) = d(y1,y2)A ◦ dx(s1, s2)

and

dx(s1, s2) = (dxs1, dxs2) = (∇xs1,∇xs2) + (dxs1 −∇xs1, dxs2 −∇xs2).

On the one hand, (∇xs1,∇xs2) takes values in (Vy1 × Vy2) ⊂ T(y1,y2)∆
∗(E × E). Note

that:
T(y1,y2)∆

∗(E × E) = {(v1, v2) ∈ Ty1E × Ty2E | dy1p · v1 = dy2p · v2} .

Since, ∆ ◦ p ◦ A = (p, p) : ∆∗(E × E) → M × M and ∆ is an immersion, we have
d(y1,y2)A(ker(dy1p, dy2p)) ⊂ ker dA(y1,y2)p. Thus d(y1,y2)A(Vy1 × Vy2) is a subspace of
Vy1+y2 and d(y1,y2)A ◦ (∇xs1,∇xs2) takes values in Vy1+y2 .

On the other hand, (dxs1 −∇xs1, dxs2 −∇xs2) takes values in Hy1 +Hy2 . Moreover,

dyip ◦ (dxsi −∇xsi) = dyip ◦ dxsi = dx(p ◦ si) = Id,

which means that the image of (dxs1−∇xs1, dxs2−∇xs2) is in T(y1,y2)∆∗ (E × E). Since
H is linear, the image of d(y1,y2)A ◦ (dxs1 −∇xs1, dxs2 −∇xs2) is included in Hy1+y2 .

Finally, we get that:

∇x(s1 + s2) = Πy1+y2 ◦
(
d(y1,y2)A ◦ (∇xs1,∇xs2) + d(y1,y2)A ◦ (dxs1 −∇xs1, dxs2 −∇xs2)

)
= d(y1,y2)A ◦ (∇xs1,∇xs2).

Under the canonical identifications Vy1+y2 ' Ex and Vy1 ' Ex ' Vy2 , d(y1,y2)A reads as
the addition of Ex. Hence, ∇x(s1 + s2) = ∇xs1 +∇xs2 and ∇ is linear.
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Leibniz’s rule. Let s ∈ Γ(E) and f ∈ C∞(M). Let x ∈ M , we denote y = s(x) and
λ = f(x). Let ϕ|U : E|U → U×Rr be a local trivialization of E on a neighborhood U of x.
We have ϕ|U ◦ s = (IdU , σ) for some smooth σ : U → Rr. Then, ϕ|U ◦ (fs) = (IdU , fσ)
and:

dλyϕ|U ◦ dx(fs) = dx(IdU , fσ) = (IdTxU , dxf ⊗ σ(x) + f(x)dxσ)

= (IdTxU , λdxσ) + dxf ⊗ (0, σ(x)).

We have ϕ|U ◦Mλ ◦s = (IdU , λs), hence dλyϕ|U ◦dyMλ ◦dxs = (IdTxU , λdxσ). Moreover,
if we see s(x) ∈ Ex as an element of Vλy ⊂ TλyE, we have dλyϕ|U · s(x) = (0, σ(x)).
Finally, we get: dλyϕ|U ◦ dx(fs) = dλyϕ|U ◦ dyMλ ◦ dxs+ dλyϕ|U (dxf ⊗ s(x)), and

dx(fs) = dyMλ ◦ dxs+ dxf ⊗ s(x). (1)

We have already seen that dyMλ ◦ dxs = dyMλ(∇xs) + dyMλ(dxs−∇xs) where the first
term takes values in Vλy and the second one takes values in Hλy. Since s(x) ∈ Ex ' Vλy,
we get∇x(fs) = dyMλ(∇xs) + dxf ⊗ s(x). Using once again that Vy ' Ex ' Vλy and
the fact that dyMλ reads as the multiplication by λ of Ex under these identifications,
we proved that ∇x(fs) = f(x)∇xs+ dxf ⊗ s(x).

Conclusion. ∇ defined by ∇xs = Πs(x) ◦ dxs is a R-linear map Γ(E)→ Γ(T ∗M ⊗E)
that satisfies Leibniz’s rule. Hence it is a connection on E.

2. Let s ∈ Γ(E), x ∈M and y = s(x). Since dyp ◦ dxs = IdTxM , dxs is injective from TxM
to TyE and its image is transverse to ker dyp = Vy. Thus dxs(TxM) is an horizontal
direction in Ey . . . that depends heavily on s. The point is to prove that the image of
dxs is the same for all s ∈ Γ(E) such that s(x) = y and ∇xs = 0. Then we can define
Hy as the image of dxs for any such section.

Sections with vanishing derivative. Let (e1, . . . , er) be a local frame defined on a
neighborhood U of x and let (x1, . . . , xn) be local coordinates on U centered at x. We
denote by (Γkij) the Christolffel symbols of ∇ associated with the frame (ei) and these
coordinates. Let s =

∑r
i=1 f

iei be a smooth section of E|U . Then, ∇xs equals:
r∑
i=1

dxf
i ⊗ ei(x) + f i(x)∇ei(x) =

r∑
i=1

dxf
i ⊗ ei(x) + f i(x)

n∑
j=1

r∑
k=1

Γkji(x) dxj ⊗ ek(x)

=

r∑
i=1

n∑
j=1

(
∂f i

∂xj
(x) +

r∑
k=1

Γijk(x)fk(x)

)
dxj ⊗ ei(x).

Thus s(x) = y =
∑
yiei(x) and ∇xs = 0 if and only if:

∀i ∈ {1, . . . , r}, f i(x) = yi

∀i ∈ {1, . . . , r},∀j ∈ {1, . . . , n}, ∂f i

∂xj
(x) = −

r∑
k=1

Γijk(x)yk.
(2)

First, this proves that there exists s such that s(x) = y and ∇xs = 0. We define such a
section locally using the frame (ei) and the coordinates (x1, . . . , xn) by s =

∑
f iei with:

∀i ∈ {1, . . . , r}, f i(x1, . . . , xn) = yi −
n∑
j=1

xj

(
r∑

k=1

Γijk(0)yk

)
.
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Then we extend s into a global section of E using a smooth bump function that equals 1
in a neighborhood of x and whose support in contained in U .

Let s ∈ Γ(E) be such that s(x) = y and ∇xs = 0. We write s =
∑
f iei in a local chart.

Using Eq. (1), which is still valid in this context, we get:

dxs =
∑

dx(f iei) =
∑

dei(x)Mf i(x) ◦ dxei + dxf
i ⊗ ei(x).

Then, by Eq. (2), in local coordinates we get:

dxs =
r∑
i=1

dx(yiei)−
r∑
j=1

r∑
k=1

Γijk(x)yk dxj ⊗ ei(x). (3)

Note that the right-hand side no longer depends on f = (f1, . . . , fn). It only depends
on ∇ and our choice of coordinates. Thus all sections s ∈ Γ(E) such that s(x) = y and
∇xs = 0 have the same differential. We define Hy := dxs(TxM) for any such section.
We have already seen that for any y ∈ E, Hy is transverse to Vy and that dxs is injective.
Then dim(Hy) = dim(M) = n, and since dim(Vy) = r we have Hy ⊕ Vy = TyE.

Horizontal sub-bundle Let y ∈ E, we denote x = p(y). Let (e1, . . . , er) be a local
frame around x and let (x1, . . . , xn) be local coordinates defined on the same neighbor-
hood U of x. From the definition of Hy, we see that (dxs · ∂

∂x1
, . . . , dxs · ∂

∂xn
) is a basis

of Hy, where dxs : TxM → TyE is defined by Eq. (3). Note that we don’t use the fact
that it is the differential of something, the notation dxs is formal here.

For any j ∈ {1, . . . , n}, we have: dxs ·
∂

∂xj
=

r∑
i=1

dx(yiei) ·
∂

∂xj
−

r∑
k=1

Γijk(x)ykei(x).

We define smooth local vector fields X1, . . . , Xn on E|U by:

Xj : y 7−→
r∑
i=1

dp(y)(y
iei) ·

∂

∂xj
−

r∑
k=1

Γijk(p(y))ykei(p(y)).

Then, for any y ∈ E|U , (X1(y), . . . , Xn(y)) is a basis of Hy. For j ∈ {1, . . . , r}, we define
Xn+j : y 7→ ej(p(y)) ∈ Ep(y) ' Vy ⊂ TyE. Then Xn+1, . . . , Xn+r are smooth vector
fields on E|U such that (Xn+1(y), . . . , Xn+r(y)) is a basis of Vy for any y ∈ E|U . Thus
(X1, . . . , Xn+r) is a local frame for TE on E|U such that ∀y ∈ E|U , (X1(y), . . . , Xn(y))
is a basis of Hy. This proves that H → E is an horizontal sub-bundle of TE → E.

Linearity of H We now need to check that H is linear. Let y ∈ E, x = p(y) and
λ ∈ R. There exists s ∈ Γ(E) such that s(x) = y and ∇xs = 0. ThenMλ ◦s(x) = Mλ(y)
and ∇x(Mλ ◦ s) = ∇x(λs) = λ∇xs = 0, the operator ∇ being R-linear. By definition
HMλ(y) = dx(Mλ ◦ s)(TxM) = (dyMλ ◦ dxs)(TxM) = dyMλ(Hy).

Similarly, let y1, y2 ∈ E such that p(y1) = p(y2) = x ∈ M . For i ∈ {1, 2}, let si ∈ Γ(E)
such that si(x) = yi and ∇xsi = 0, so that Hyi = dxsi(TxM). Then A◦(s1, s2) ∈ Γ(E) is
such that (A◦(s1, s2))(x) = y1+y2 and∇x(A◦(s1, s2)) = ∇x(s1+s2) = ∇xs1+∇xs2 = 0.
Thus Hy1+y2 = dx(A◦ (s1, s2))(TxM) = d(y1,y2)A◦dx(s1, s2)(TxM). One can check that:

dx(s1, s2)(TxM) = (dxs1, dxs2)(TxM) = (Hy1 ×Hy2) ∩ T(y1,y2)∆
∗(E × E).

This shows that H is compatible with A and concludes the proof of the linearity of H.
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3. Recall that the zero section of E is z : M → E defined by z(x) = 0 ∈ Ex. Since z and p
are smooth and p ◦ z = IdM , z is an embedding of M into E. Indeed, z is an immersive
injection and is proper. Let us denote Z = z(M) the image of the zero section.

Let y ∈ Z and x = p(y). Then y = z(x) and TyE = TyZ⊕Vy. Indeed, dyp◦dxz = IdTxM
so that TyZ = dxz(TxM) has dimension n and is transverse to Vy = ker(dyp). That is,
we already have a canonical horizontal direction in TyE which is TyZ.

Let ∇ be any connection on E and let H be the associated linear horizontal sub-bundle
of TE. Let f : M → R be constant equal to 0. Let also x ∈ M and y = z(x) ∈ E. We
have: ∇xz = ∇x(fz) = dxf ⊗ z(x) +f(x)∇xz = 0. Then z ∈ Γ(E) is such that z(x) = y
and ∇xz = 0. Thus, by the previous question, Hy = dxz(TxM) = TyZ.

In conclusion, let s ∈ Γ(E) and x ∈ M be such that y = s(x) = 0. For any connection
∇, the associated horizontal direction in TyE is Hy = TyZ. Since ∇xs is the projection
of dxs onto Vy along Hy, it does not depend on the choice of ∇.

4. We defined h ∈ Γ(E∗ ⊗E∗). We can also see h as a smooth map from ∆∗(E ×E) to R,
where ∆ : M →M ×M is defined by x 7→ (x, x). We define similarly ∆E : E → E ×E
by ∆E(y) = (y, y). For any R > 0, we denote by TR the tube of radius R in E:

TR :=
{
y ∈ E

∣∣ hp(y)(y, y) = R2
}

= (h ◦∆E)−1(R2).

We will prove that TR is a smooth hypersurface of E for any R > 0 and that, if ∇ is a
metric connection on (E, h) and H is the associated linear horizontal sub-bundle of TE,
then for every y ∈ TR, Hy is tangent to TR at y.

Note that we say nothing about what happens along Z (that we can think of as T0) but,
by the previous question, Hy does not depend on ∇ if y ∈ Z. In particular, it does not
depend on the fact that ∇ be compatible with h.

Tubes. First note that h ◦∆E : E → R+ is smooth. Let R > 0 and let y ∈ TR. For
any t > 0, we have h ◦∆E(ty) = h(ty, ty) = t2h(y, y) = t2R2. Taking the derivative of
this expression at t = 1 we get: dy(h ◦∆E) · y = 2R2 (recall that y ∈ Ex ' Vy ⊂ TyE).
Hence dy(h ◦∆E) 6= 0. Thus h ◦∆E is a submersion on E \Z and, for any R > 0, TR is
smooth hypersurface of E.

Tangency. Let R > 0 and y ∈ TR, we denote x = p(y). Let ∇ be a connection on E
that is compatible with h and let H denote the associated horizontal sub-bundle of TE.
Let s ∈ Γ(E) such that s(x) = y and ∇xs = 0, so that Hy = dxs(TxM). We have:

dy(h ◦∆E) ◦ dxs = dx(h ◦∆E ◦ s) = dx(h(s, s)) = 2hy(∇xs, s(x)) = 0,

where we used the compatibility of ∇ with h, the symmetry of h, and ∇xs = 0. Finally,

Hy = dxs(TxM) ⊂ ker dy(h ◦∆E) = TyTR.

That is, the horizontal sub-bundle H → E associated with a connection compatible with
the metric h on E is everywhere tangent to the tubes of constant radius in (E, h). Note
that this is also true for R = 0 since T0 = Z and, for any y ∈ Z, Hy = TyZ.

4


