1. Let $x \in M$ and $y \in E_{x}$, we denote by Π_{y} the projection onto V_{y} along H_{y} in $T_{y} E$. For any $s \in \Gamma(E)$, we define $\forall x \in M, \nabla_{x} s:=\Pi_{s(x)}\left(d_{x} s\right)$. We have $\nabla_{x} s: T_{x} M \rightarrow V_{y} \simeq E_{x}$, hence $\nabla s \in \Gamma\left(T^{*} M \otimes E\right)$ and $\nabla: \Gamma(E) \rightarrow \Gamma\left(T^{*} M \otimes E\right)$. Let us check that ∇ is a connection.

Homogeneity. Let $\lambda \in \mathbb{R}$ and $s \in \Gamma(E)$. Let $x \in M$, we denote $y=s(x)$, we have $d_{x} s=\nabla_{x} s+\left(d_{x} s-\nabla_{x} s\right)$ with $\nabla_{x} s$ taking values in V_{y} and $\left(d_{x} s-\nabla_{x} s\right)$ taking values in H_{y}. We have

$$
d_{x}(\lambda s)=d_{x}\left(M_{\lambda} \circ s\right)=d_{y} M_{\lambda} \circ d_{x} s=d_{y} M_{\lambda}\left(\nabla_{x} s\right)+d_{y} M_{\lambda}\left(d_{x} s-\nabla_{x} s\right)
$$

We assumed that $d_{y} M_{\lambda}\left(H_{y}\right)=H_{\lambda y}$, hence $d_{y} M_{\lambda}\left(d_{x} s-\nabla_{x} s\right)$ takes values in $H_{\lambda y}$. Besides, $p \circ M_{\lambda}=p$, hence $d_{\lambda y} p \circ d_{y} M_{\lambda}=d_{y} p$, and $d_{y} M_{\lambda}\left(V_{y}\right)=d_{y} M_{\lambda}\left(\operatorname{ker} d_{y} p\right) \subset \operatorname{ker} d_{\lambda y} p=V_{\lambda y}$. In fact $d_{\lambda y} p \circ d_{y} M_{\lambda}=V_{\lambda y}$ by a dimension argument. Thus $d_{y} M_{\lambda}\left(\nabla_{x} s\right)$ takes values in $V_{\lambda y}$ and we have $\nabla_{x}(\lambda s)=d_{y} M_{\lambda}\left(\nabla_{x} s\right)$.
Recall that $V_{y} \simeq E_{x} \simeq V_{\lambda y}$ canonically, and under this identification $d_{y} M_{\lambda}$ is the multiplication by λ in E_{x}. Thus $\nabla_{x}(\lambda s)=\lambda \nabla_{x} s$.

Additivity. Now, let $s_{1}, s_{2} \in \Gamma(E)$, let $x \in M$, we denote $y_{1}=s_{1}(x)$ and $y_{2}=s_{2}(x)$. We have:

$$
d_{x}\left(s_{1}+s_{2}\right)=d_{x}\left(A \circ\left(s_{1}, s_{2}\right)\right)=d_{\left(y_{1}, y_{2}\right)} A \circ d_{x}\left(s_{1}, s_{2}\right)
$$

and

$$
d_{x}\left(s_{1}, s_{2}\right)=\left(d_{x} s_{1}, d_{x} s_{2}\right)=\left(\nabla_{x} s_{1}, \nabla_{x} s_{2}\right)+\left(d_{x} s_{1}-\nabla_{x} s_{1}, d_{x} s_{2}-\nabla_{x} s_{2}\right)
$$

On the one hand, $\left(\nabla_{x} s_{1}, \nabla_{x} s_{2}\right)$ takes values in $\left(V_{y_{1}} \times V_{y_{2}}\right) \subset T_{\left(y_{1}, y_{2}\right)} \Delta^{*}(E \times E)$. Note that:

$$
T_{\left(y_{1}, y_{2}\right)} \Delta^{*}(E \times E)=\left\{\left(v_{1}, v_{2}\right) \in T_{y_{1}} E \times T_{y_{2}} E \mid d_{y_{1}} p \cdot v_{1}=d_{y_{2}} p \cdot v_{2}\right\}
$$

Since, $\Delta \circ p \circ A=(p, p): \Delta^{*}(E \times E) \rightarrow M \times M$ and Δ is an immersion, we have $d_{\left(y_{1}, y_{2}\right)} A\left(\operatorname{ker}\left(d_{y_{1}} p, d_{y_{2}} p\right)\right) \subset \operatorname{ker} d_{A\left(y_{1}, y_{2}\right)} p$. Thus $d_{\left(y_{1}, y_{2}\right)} A\left(V_{y_{1}} \times V_{y_{2}}\right)$ is a subspace of $V_{y_{1}+y_{2}}$ and $d_{\left(y_{1}, y_{2}\right)} A \circ\left(\nabla_{x} s_{1}, \nabla_{x} s_{2}\right)$ takes values in $V_{y_{1}+y_{2}}$.
On the other hand, $\left(d_{x} s_{1}-\nabla_{x} s_{1}, d_{x} s_{2}-\nabla_{x} s_{2}\right)$ takes values in $H_{y_{1}}+H_{y_{2}}$. Moreover,

$$
d_{y_{i}} p \circ\left(d_{x} s_{i}-\nabla_{x} s_{i}\right)=d_{y_{i}} p \circ d_{x} s_{i}=d_{x}\left(p \circ s_{i}\right)=\mathrm{Id}
$$

which means that the image of $\left(d_{x} s_{1}-\nabla_{x} s_{1}, d_{x} s_{2}-\nabla_{x} s_{2}\right)$ is in $T_{\left(y_{1}, y_{2}\right)} \Delta^{*}(E \times E)$. Since H is linear, the image of $d_{\left(y_{1}, y_{2}\right)} A \circ\left(d_{x} s_{1}-\nabla_{x} s_{1}, d_{x} s_{2}-\nabla_{x} s_{2}\right)$ is included in $H_{y_{1}+y_{2}}$.
Finally, we get that:

$$
\begin{aligned}
\nabla_{x}\left(s_{1}+s_{2}\right) & =\Pi_{y_{1}+y_{2}} \circ\left(d_{\left(y_{1}, y_{2}\right)} A \circ\left(\nabla_{x} s_{1}, \nabla_{x} s_{2}\right)+d_{\left(y_{1}, y_{2}\right)} A \circ\left(d_{x} s_{1}-\nabla_{x} s_{1}, d_{x} s_{2}-\nabla_{x} s_{2}\right)\right) \\
& =d_{\left(y_{1}, y_{2}\right)} A \circ\left(\nabla_{x} s_{1}, \nabla_{x} s_{2}\right)
\end{aligned}
$$

Under the canonical identifications $V_{y_{1}+y_{2}} \simeq E_{x}$ and $V_{y_{1}} \simeq E_{x} \simeq V_{y_{2}}, d_{\left(y_{1}, y_{2}\right)} A$ reads as the addition of E_{x}. Hence, $\nabla_{x}\left(s_{1}+s_{2}\right)=\nabla_{x} s_{1}+\nabla_{x} s_{2}$ and ∇ is linear.

Leibniz's rule. Let $s \in \Gamma(E)$ and $f \in \mathcal{C}^{\infty}(M)$. Let $x \in M$, we denote $y=s(x)$ and $\lambda=f(x)$. Let $\varphi_{\mid U}: E_{\mid U} \rightarrow U \times \mathbb{R}^{r}$ be a local trivialization of E on a neighborhood U of x. We have $\varphi_{\mid U} \circ s=\left(\operatorname{Id}_{U}, \sigma\right)$ for some smooth $\sigma: U \rightarrow \mathbb{R}^{r}$. Then, $\varphi_{\mid U} \circ(f s)=\left(\operatorname{Id}_{U}, f \sigma\right)$ and:

$$
\begin{aligned}
d_{\lambda y} \varphi_{\mid U} \circ d_{x}(f s) & =d_{x}\left(\operatorname{Id}_{U}, f \sigma\right)=\left(\operatorname{Id}_{T_{x} U}, d_{x} f \otimes \sigma(x)+f(x) d_{x} \sigma\right) \\
& =\left(\operatorname{Id}_{T_{x} U}, \lambda d_{x} \sigma\right)+d_{x} f \otimes(0, \sigma(x)) .
\end{aligned}
$$

We have $\varphi_{\mid U} \circ M_{\lambda} \circ s=\left(\operatorname{Id}_{U}, \lambda s\right)$, hence $d_{\lambda y} \varphi_{\mid U} \circ d_{y} M_{\lambda} \circ d_{x} s=\left(\operatorname{Id}_{T_{x} U}, \lambda d_{x} \sigma\right)$. Moreover, if we see $s(x) \in E_{x}$ as an element of $V_{\lambda y} \subset T_{\lambda y} E$, we have $d_{\lambda y} \varphi_{\mid U} \cdot s(x)=(0, \sigma(x))$. Finally, we get: $d_{\lambda y} \varphi_{\mid U} \circ d_{x}(f s)=d_{\lambda y} \varphi_{\mid U} \circ d_{y} M_{\lambda} \circ d_{x} s+d_{\lambda y} \varphi_{\mid U}\left(d_{x} f \otimes s(x)\right)$, and

$$
\begin{equation*}
d_{x}(f s)=d_{y} M_{\lambda} \circ d_{x} s+d_{x} f \otimes s(x) \tag{1}
\end{equation*}
$$

We have already seen that $d_{y} M_{\lambda} \circ d_{x} s=d_{y} M_{\lambda}\left(\nabla_{x} s\right)+d_{y} M_{\lambda}\left(d_{x} s-\nabla_{x} s\right)$ where the first term takes values in $V_{\lambda y}$ and the second one takes values in $H_{\lambda y}$. Since $s(x) \in E_{x} \simeq V_{\lambda y}$, we $\operatorname{get} \nabla_{x}(f s)=d_{y} M_{\lambda}\left(\nabla_{x} s\right)+d_{x} f \otimes s(x)$. Using once again that $V_{y} \simeq E_{x} \simeq V_{\lambda y}$ and the fact that $d_{y} M_{\lambda}$ reads as the multiplication by λ of E_{x} under these identifications, we proved that $\nabla_{x}(f s)=f(x) \nabla_{x} s+d_{x} f \otimes s(x)$.

Conclusion. $\quad \nabla$ defined by $\nabla_{x} s=\Pi_{s(x)} \circ d_{x} s$ is a \mathbb{R}-linear map $\Gamma(E) \rightarrow \Gamma\left(T^{*} M \otimes E\right)$ that satisfies Leibniz's rule. Hence it is a connection on E.
2. Let $s \in \Gamma(E), x \in M$ and $y=s(x)$. Since $d_{y} p \circ d_{x} s=\operatorname{Id}_{T_{x} M}, d_{x} s$ is injective from $T_{x} M$ to $T_{y} E$ and its image is transverse to $\operatorname{ker} d_{y} p=V_{y}$. Thus $d_{x} s\left(T_{x} M\right)$ is an horizontal direction in $E_{y} \ldots$ that depends heavily on s. The point is to prove that the image of $d_{x} s$ is the same for all $s \in \Gamma(E)$ such that $s(x)=y$ and $\nabla_{x} s=0$. Then we can define H_{y} as the image of $d_{x} s$ for any such section.

Sections with vanishing derivative. Let $\left(e_{1}, \ldots, e_{r}\right)$ be a local frame defined on a neighborhood U of x and let $\left(x^{1}, \ldots, x^{n}\right)$ be local coordinates on U centered at x. We denote by $\left(\Gamma_{i j}^{k}\right)$ the Christolffel symbols of ∇ associated with the frame $\left(e_{i}\right)$ and these coordinates. Let $s=\sum_{i=1}^{r} f^{i} e_{i}$ be a smooth section of $E_{\mid U}$. Then, $\nabla_{x} s$ equals:

$$
\begin{aligned}
\sum_{i=1}^{r} d_{x} f^{i} \otimes e_{i}(x)+f^{i}(x) \nabla e_{i}(x) & =\sum_{i=1}^{r} d_{x} f^{i} \otimes e_{i}(x)+f^{i}(x) \sum_{j=1}^{n} \sum_{k=1}^{r} \Gamma_{j i}^{k}(x) \mathrm{d} x^{j} \otimes e_{k}(x) \\
& =\sum_{i=1}^{r} \sum_{j=1}^{n}\left(\frac{\partial f^{i}}{\partial x_{j}}(x)+\sum_{k=1}^{r} \Gamma_{j k}^{i}(x) f^{k}(x)\right) \mathrm{d} x^{j} \otimes e_{i}(x) .
\end{aligned}
$$

Thus $s(x)=y=\sum y^{i} e_{i}(x)$ and $\nabla_{x} s=0$ if and only if:

$$
\begin{cases}\forall i \in\{1, \ldots, r\}, & f^{i}(x)=y^{i} \tag{2}\\ \forall i \in\{1, \ldots, r\}, \forall j \in\{1, \ldots, n\}, & \frac{\partial f^{i}}{\partial x_{j}}(x)=-\sum_{k=1}^{r} \Gamma_{j k}^{i}(x) y^{k} .\end{cases}
$$

First, this proves that there exists s such that $s(x)=y$ and $\nabla_{x} s=0$. We define such a section locally using the frame $\left(e_{i}\right)$ and the coordinates $\left(x^{1}, \ldots, x^{n}\right)$ by $s=\sum f^{i} e_{i}$ with:

$$
\forall i \in\{1, \ldots, r\}, \quad f^{i}\left(x_{1}, \ldots, x_{n}\right)=y^{i}-\sum_{j=1}^{n} x^{j}\left(\sum_{k=1}^{r} \Gamma_{j k}^{i}(0) y^{k}\right) .
$$

Then we extend s into a global section of E using a smooth bump function that equals 1 in a neighborhood of x and whose support in contained in U.
Let $s \in \Gamma(E)$ be such that $s(x)=y$ and $\nabla_{x} s=0$. We write $s=\sum f^{i} e_{i}$ in a local chart. Using Eq. (1), which is still valid in this context, we get:

$$
d_{x} s=\sum d_{x}\left(f^{i} e_{i}\right)=\sum d_{e_{i}(x)} M_{f^{i}(x)} \circ d_{x} e_{i}+d_{x} f^{i} \otimes e_{i}(x)
$$

Then, by Eq. (2), in local coordinates we get:

$$
\begin{equation*}
d_{x} s=\sum_{i=1}^{r} d_{x}\left(y^{i} e_{i}\right)-\sum_{j=1}^{r} \sum_{k=1}^{r} \Gamma_{j k}^{i}(x) y^{k} \mathrm{~d} x^{j} \otimes e_{i}(x) . \tag{3}
\end{equation*}
$$

Note that the right-hand side no longer depends on $f=\left(f^{1}, \ldots, f^{n}\right)$. It only depends on ∇ and our choice of coordinates. Thus all sections $s \in \Gamma(E)$ such that $s(x)=y$ and $\nabla_{x} s=0$ have the same differential. We define $H_{y}:=d_{x} s\left(T_{x} M\right)$ for any such section. We have already seen that for any $y \in E, H_{y}$ is transverse to V_{y} and that $d_{x} s$ is injective. Then $\operatorname{dim}\left(H_{y}\right)=\operatorname{dim}(M)=n$, and since $\operatorname{dim}\left(V_{y}\right)=r$ we have $H_{y} \oplus V_{y}=T_{y} E$.

Horizontal sub-bundle Let $y \in E$, we denote $x=p(y)$. Let $\left(e_{1}, \ldots, e_{r}\right)$ be a local frame around x and let $\left(x^{1}, \ldots, x^{n}\right)$ be local coordinates defined on the same neighborhood U of x. From the definition of H_{y}, we see that ($d_{x} s \cdot \frac{\partial}{\partial x_{1}}, \ldots, d_{x} s \cdot \frac{\partial}{\partial x_{n}}$) is a basis of H_{y}, where $d_{x} s: T_{x} M \rightarrow T_{y} E$ is defined by Eq. (3). Note that we don't use the fact that it is the differential of something, the notation $d_{x} s$ is formal here.
For any $j \in\{1, \ldots, n\}$, we have: $d_{x} s \cdot \frac{\partial}{\partial x_{j}}=\sum_{i=1}^{r} d_{x}\left(y^{i} e_{i}\right) \cdot \frac{\partial}{\partial x_{j}}-\sum_{k=1}^{r} \Gamma_{j k}^{i}(x) y^{k} e_{i}(x)$.
We define smooth local vector fields X_{1}, \ldots, X_{n} on $E_{\mid U}$ by:

$$
X_{j}: y \longmapsto \sum_{i=1}^{r} d_{p(y)}\left(y^{i} e_{i}\right) \cdot \frac{\partial}{\partial x_{j}}-\sum_{k=1}^{r} \Gamma_{j k}^{i}(p(y)) y^{k} e_{i}(p(y)) .
$$

Then, for any $y \in E_{\mid U},\left(X_{1}(y), \ldots, X_{n}(y)\right)$ is a basis of H_{y}. For $j \in\{1, \ldots, r\}$, we define $X_{n+j}: y \mapsto e_{j}(p(y)) \in E_{p(y)} \simeq V_{y} \subset T_{y} E$. Then X_{n+1}, \ldots, X_{n+r} are smooth vector fields on $E_{\mid U}$ such that $\left(X_{n+1}(y), \ldots, X_{n+r}(y)\right)$ is a basis of V_{y} for any $y \in E_{\mid U}$. Thus $\left(X_{1}, \ldots, X_{n+r}\right)$ is a local frame for $T E$ on $E_{\mid U}$ such that $\forall y \in E_{\mid U},\left(X_{1}(y), \ldots, X_{n}(y)\right)$ is a basis of H_{y}. This proves that $H \rightarrow E$ is an horizontal sub-bundle of $T E \rightarrow E$.

Linearity of H We now need to check that H is linear. Let $y \in E, x=p(y)$ and $\lambda \in \mathbb{R}$. There exists $s \in \Gamma(E)$ such that $s(x)=y$ and $\nabla_{x} s=0$. Then $M_{\lambda} \circ s(x)=M_{\lambda}(y)$ and $\nabla_{x}\left(M_{\lambda} \circ s\right)=\nabla_{x}(\lambda s)=\lambda \nabla_{x} s=0$, the operator ∇ being \mathbb{R}-linear. By definition $H_{M_{\lambda}(y)}=d_{x}\left(M_{\lambda} \circ s\right)\left(T_{x} M\right)=\left(d_{y} M_{\lambda} \circ d_{x} s\right)\left(T_{x} M\right)=d_{y} M_{\lambda}\left(H_{y}\right)$.
Similarly, let $y_{1}, y_{2} \in E$ such that $p\left(y_{1}\right)=p\left(y_{2}\right)=x \in M$. For $i \in\{1,2\}$, let $s_{i} \in \Gamma(E)$ such that $s_{i}(x)=y_{i}$ and $\nabla_{x} s_{i}=0$, so that $H_{y_{i}}=d_{x} s_{i}\left(T_{x} M\right)$. Then $A \circ\left(s_{1}, s_{2}\right) \in \Gamma(E)$ is such that $\left(A \circ\left(s_{1}, s_{2}\right)\right)(x)=y_{1}+y_{2}$ and $\nabla_{x}\left(A \circ\left(s_{1}, s_{2}\right)\right)=\nabla_{x}\left(s_{1}+s_{2}\right)=\nabla_{x} s_{1}+\nabla_{x} s_{2}=0$. Thus $H_{y_{1}+y_{2}}=d_{x}\left(A \circ\left(s_{1}, s_{2}\right)\right)\left(T_{x} M\right)=d_{\left(y_{1}, y_{2}\right)} A \circ d_{x}\left(s_{1}, s_{2}\right)\left(T_{x} M\right)$. One can check that:

$$
d_{x}\left(s_{1}, s_{2}\right)\left(T_{x} M\right)=\left(d_{x} s_{1}, d_{x} s_{2}\right)\left(T_{x} M\right)=\left(H_{y_{1}} \times H_{y_{2}}\right) \cap T_{\left(y_{1}, y_{2}\right)} \Delta^{*}(E \times E)
$$

This shows that H is compatible with A and concludes the proof of the linearity of H.
3. Recall that the zero section of E is $z: M \rightarrow E$ defined by $z(x)=0 \in E_{x}$. Since z and p are smooth and $p \circ z=\mathrm{Id}_{M}, z$ is an embedding of M into E. Indeed, z is an immersive injection and is proper. Let us denote $Z=z(M)$ the image of the zero section.
Let $y \in Z$ and $x=p(y)$. Then $y=z(x)$ and $T_{y} E=T_{y} Z \oplus V_{y}$. Indeed, $d_{y} p \circ d_{x} z=\operatorname{Id}_{T_{x} M}$ so that $T_{y} Z=d_{x} z\left(T_{x} M\right)$ has dimension n and is transverse to $V_{y}=\operatorname{ker}\left(d_{y} p\right)$. That is, we already have a canonical horizontal direction in $T_{y} E$ which is $T_{y} Z$.
Let ∇ be any connection on E and let H be the associated linear horizontal sub-bundle of $T E$. Let $f: M \rightarrow \mathbb{R}$ be constant equal to 0 . Let also $x \in M$ and $y=z(x) \in E$. We have: $\nabla_{x} z=\nabla_{x}(f z)=d_{x} f \otimes z(x)+f(x) \nabla_{x} z=0$. Then $z \in \Gamma(E)$ is such that $z(x)=y$ and $\nabla_{x} z=0$. Thus, by the previous question, $H_{y}=d_{x} z\left(T_{x} M\right)=T_{y} Z$.
In conclusion, let $s \in \Gamma(E)$ and $x \in M$ be such that $y=s(x)=0$. For any connection ∇, the associated horizontal direction in $T_{y} E$ is $H_{y}=T_{y} Z$. Since $\nabla_{x} s$ is the projection of $d_{x} s$ onto V_{y} along H_{y}, it does not depend on the choice of ∇.
4. We defined $h \in \Gamma\left(E^{*} \otimes E^{*}\right)$. We can also see h as a smooth map from $\Delta^{*}(E \times E)$ to \mathbb{R}, where $\Delta: M \rightarrow M \times M$ is defined by $x \mapsto(x, x)$. We define similarly $\Delta_{E}: E \rightarrow E \times E$ by $\Delta_{E}(y)=(y, y)$. For any $R>0$, we denote by \mathcal{T}_{R} the tube of radius R in E :

$$
\mathcal{T}_{R}:=\left\{y \in E \mid h_{p(y)}(y, y)=R^{2}\right\}=\left(h \circ \Delta_{E}\right)^{-1}\left(R^{2}\right) .
$$

We will prove that \mathcal{T}_{R} is a smooth hypersurface of E for any $R>0$ and that, if ∇ is a metric connection on (E, h) and H is the associated linear horizontal sub-bundle of $T E$, then for every $y \in \mathcal{T}_{R}, H_{y}$ is tangent to \mathcal{T}_{R} at y.
Note that we say nothing about what happens along Z (that we can think of as \mathcal{T}_{0}) but, by the previous question, H_{y} does not depend on ∇ if $y \in Z$. In particular, it does not depend on the fact that ∇ be compatible with h.

Tubes. First note that $h \circ \Delta_{E}: E \rightarrow \mathbb{R}_{+}$is smooth. Let $R>0$ and let $y \in \mathcal{T}_{R}$. For any $t>0$, we have $h \circ \Delta_{E}(t y)=h(t y, t y)=t^{2} h(y, y)=t^{2} R^{2}$. Taking the derivative of this expression at $t=1$ we get: $d_{y}\left(h \circ \Delta_{E}\right) \cdot y=2 R^{2}$ (recall that $y \in E_{x} \simeq V_{y} \subset T_{y} E$). Hence $d_{y}\left(h \circ \Delta_{E}\right) \neq 0$. Thus $h \circ \Delta_{E}$ is a submersion on $E \backslash Z$ and, for any $R>0, \mathcal{T}_{R}$ is smooth hypersurface of E.

Tangency. Let $R>0$ and $y \in \mathcal{T}_{R}$, we denote $x=p(y)$. Let ∇ be a connection on E that is compatible with h and let H denote the associated horizontal sub-bundle of $T E$. Let $s \in \Gamma(E)$ such that $s(x)=y$ and $\nabla_{x} s=0$, so that $H_{y}=d_{x} s\left(T_{x} M\right)$. We have:

$$
d_{y}\left(h \circ \Delta_{E}\right) \circ d_{x} s=d_{x}\left(h \circ \Delta_{E} \circ s\right)=d_{x}(h(s, s))=2 h_{y}\left(\nabla_{x} s, s(x)\right)=0,
$$

where we used the compatibility of ∇ with h, the symmetry of h, and $\nabla_{x} s=0$. Finally,

$$
H_{y}=d_{x} s\left(T_{x} M\right) \subset \operatorname{ker} d_{y}\left(h \circ \Delta_{E}\right)=T_{y} \mathcal{T}_{R} .
$$

That is, the horizontal sub-bundle $H \rightarrow E$ associated with a connection compatible with the metric h on E is everywhere tangent to the tubes of constant radius in (E, h). Note that this is also true for $R=0$ since $\mathcal{T}_{0}=Z$ and, for any $y \in Z, H_{y}=T_{y} Z$.

