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Geometric meaning of connections (Solution)

1. Let x € M and y € E,, we denote by II, the projection onto V}, along H, in Ty F. For
any s € I'(E), we define Vo € M, V,s := Hs(x)(dws). We have Vs : T, M — V, ~ E,,
hence Vs € I'(T*"M ® E) and V : I'(E) — I'(T"M ® E). Let us check that V is a

connection.

Homogeneity. Let A € R and s € T'(E). Let x € M, we denote y = s(x), we have
dys = Vs + (dys — Vys) with Vs taking values in V), and (d,s — V,s) taking values
in H,. We have

dy(As) = dy(My 0 8) = dyMy o dys = dyMy(Vys) + dyMy(dzs — Vys).

We assumed that d, M) (H,) = H),, hence dy M) (d,s—V ;s) takes values in H),. Besides,
po My = p, hence dyypod,My = dyp, and dyM)(V,) = dyMy(ker dyp) C kerdy,p = V).
In fact dyyp o dyMy = V), by a dimension argument. Thus d,M(V,s) takes values in
Vyy and we have V,(As) = dyM)(V,s).

Recall that V,, ~ E, ~ V), canonically, and under this identification d, M} is the multi-
plication by X in E,. Thus V, (As) = AVs.

Additivity. Now, let s1,s2 € I'(E), let © € M, we denote y; = s1(z) and y2 = sa(x).
We have:

dz(sl + 82) = dx(A o (517 82)) = d(yl,yg)A © dx(sla 32)
and
dm(sla 32) = (dxsla d:rSZ) = (szb VJBSQ) + (dmsl - Va:817d3752 - V:ESZ)-

On the one hand, (V;s1, Vsg) takes values in (Vy, x Vi) C Ty, 4,)A"(E x E). Note
that:
T(yhyz)A*(E X E) = {(U1>U2) € TylE X Ty2E ’ dylp *U1 = dyzp : U2}'

Since, Aopo A = (p,p) : A"(E x E) - M x M and A is an immersion, we have
d(y, yo) Alker(dy, p,dy,p)) C kerdy(y, yoyp- Thus dy, 4, A(Vy, x Vy,) is a subspace of
Vi tye and dgy, o)A o (Vist, Visz) takes values in Vy 4y,

On the other hand, (dys1 — Vgs1,dgsas — V52) takes values in Hy, + Hy,. Moreover,
dy,po (dgs; — Vgsi) = dy,podys; = dg(pos;) =1d,

which means that the image of (d;s1 — V81, d;s2 —V,s2) is in T
H is linear, the image of d

vy A (B x E). Since

sy Ao (des1 — Viys1,dys2 — Visg) is included in Hy, 4y, .

Finally, we get that:

Va(s1+52) = Il 4y, © (d(yl,m)A 0 (Vis1, Vis2) +dy, 4y Ao (dest — Vs, dysa — VIS2))
= d(ylny)A © (vxsl, vxSQ),

Under the canonical identifications Vy, 1y, >~ E, and Vy, ~ E; >~ Vy,, d(,, ,,)A reads as
the addition of E,. Hence, V,(s1 + $2) = Vzs1 + V82 and V is linear.



Leibniz’s rule. Let s € I'(F) and f € C*°(M). Let x € M, we denote y = s(z) and
A= f(z). Let oy : Ejy — UXR" be alocal trivialization of E on a neighborhood U of z.
We have ¢y o s = (Idy, o) for some smooth o : U — R". Then, ¢y o (fs) = (Idy, fo)
and:

d)\ySD\U 0 dx(fs) = dx(IdU7 fa) = (IdeU7 dy f ® U(ZE) + f($)dx0)
= (IdeUa )\de') + dxf & (0, U(.T))
We have @y 0 My os = (Idy, As), hence dy, |y ody My odys = (Id7,u, Adzo). Moreover,
if we see s(x) € Ej as an element of V), C T),FE, we have dy,p - s(z) = (0,0(z)).
Finally, we get: dy,pp 0 de(fs) = drypjy © dy My o dys + dyypyy(de f @ s()), and
0a(f5) = dyMy o dys + duf © s(). &

We have already seen that dy My odys = dyMy(Vs) 4+ dyMy(dys — Vys) where the first
term takes values in V), and the second one takes values in Hy,. Since s(z) € E, ~ V),
we getVa(fs) = dyMx(Vys) + dof ® s(x). Using once again that V, ~ E, ~ V), and
the fact that d,M) reads as the multiplication by A of E, under these identifications,
we proved that V,(fs) = f(2)Vzs + dof ® s(x).

Conclusion. V defined by Vs = Il ;) o d;s is a R-linear map I'(E) — I'(T*M ® E)
that satisfies Leibniz’s rule. Hence it is a connection on E.

. Let s e I'(F), x € M and y = s(x). Since dyp o dys = Idp, ur, dgs is injective from T, M
to TyE and its image is transverse to kerdyp = V. Thus d,s(T, M) is an horizontal
direction in £, ... that depends heavily on s. The point is to prove that the image of
dgs is the same for all s € I'(E) such that s(z) = y and Vs = 0. Then we can define
H, as the image of d,s for any such section.

Sections with vanishing derivative. Let (eq,...,e;) be a local frame defined on a
neighborhood U of x and let (x!,...,2") be local coordinates on U centered at z. We
denote by (Ffj) the Christolffel symbols of V associated with the frame (e;) and these

coordinates. Let s = >\, f'e; be a smooth section of Ey. Then, Vs equals:

Zdﬂ@ez )+ 1) Vei(x Zd]”@ez )+ iz ZZF ) da’ @ e ()

7j=1 k=1
:ZZ(a +ZI‘ >d$]®e()
— < 0 ’
=1 j=1
Thus s(z) =y = > y'e;(x) and Vs = 0 if and only if:
Vie{l,...,r}, fiz) =y
. : of . 2
Vie{l,...,r},Vje{l,...,n}, ai(x) ==Y Ti(x)y" @
J k=1

First, this proves that there exists s such that s(z) = y and V,s = 0. We define such a
section locally using the frame (e;) and the coordinates (z!,...,2") by s = Y fie; with:

Vie{l,...,r}, fix1, .. zn) =y — ij <Z F;k(O)yk> .
j=1 k=1
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Then we extend s into a global section of E using a smooth bump function that equals 1
in a neighborhood of x and whose support in contained in U.

Let s € I'(E) be such that s(z) = y and V,s = 0. We write s = Y_ f’e; in a local chart.
Using Eq. (1), which is still valid in this context, we get:

dys = de(fzel) - Zdei(JC)Mfi(x) o dyei + dmfi ® ei(x).

Then, by Eq. (2), in local coordinates we get:

dys = Z;dw(yiel ZZF z)y* da? @ e;(x). (3)

=1 k=1

Note that the right-hand side no longer depends on f = (f!,..., f*). It only depends
on V and our choice of coordinates. Thus all sections s € I'(E) such that s(x) = y and
Vzs = 0 have the same differential. We define Hy := d,s(T, M) for any such section.
We have already seen that for any y € E, H, is transverse to V,, and that d.s is injective.
Then dim(H,) = dim(M) = n, and since dim(V,) = r we have H, @ V,, = T, E.

Horizontal sub-bundle Let y € E, we denote x = p(y). Let (eq,...,e,) be a local
frame around x and let (x!,...,2™) be local coordinates defined on the same neighbor-
hood U of z. From the definition of H,, we see that (ds - 8%1, e, dgs - %) is a basis
of Hy, where dys : T,M — T,FE is defined by Eq. (3). Note that we don’t use the fact
that it is the differential of something, the notation d,s is formal here.

0 . -
For any j € {1,...,n}, we have: ds - P = de(y’ei) ZF]k z)yFei(z
i =

We define smooth local vector fields X3, ..., X, on Ejy by:

,
Ly Zd Wer) 52— STl pv)
k=1
Then, for any y € Eyy, (X1(y), ..., Xn(y)) is a basis of H,. For j € {1,...,7}, we define
Xnyj oy = ej(py) € Ep) = Vy C TyE. Then X,41,..., Xpy, are smooth vector
fields on Ej;; such that (X,11(y),. .., Xntr(y)) is a basis of V,, for any y € Ejy;. Thus
(X1, .., Xpgr) is a local frame for TE on Ejy; such that Vy € Ey, (X1(y), ..., Xa(y))
is a basis of Hy. This proves that H — FE is an horizontal sub-bundle of TE — E.

Linearity of H We now need to check that H is linear. Let y € E, z = p(y) and
A € R. There exists s € I'(E) such that s(x) = y and Vzs = 0. Then Myos(z) = My(y)
and V(M o s) = Vi (As) = AV,s = 0, the operator V being R-linear. By definition
Hyp, () = da(M)y 0 8) (T M) = (dyM) 0 dys)(Te M) = dyMy(Hy).

Similarly, let y1,y2 € E such that p(y1) = p(y2) = x € M. For i € {1,2}, let s; € T'(E)
such that s;(z) = y; and V,s; = 0, so that Hy, = dys;(T;M). Then Ao(sy,s2) € I'(E) is
such that (Ao(sy,s2))(x) = y1+y2 and V,(Ao(s1,52)) = Vai(s1+82) = Vesi+Vese = 0.

Thus Hy, 4y, = de(Ao(s1,52))(TeM) = dy, y,)Aodz(s1,52)(T:M). One can check that:

(51, 52) (ToM) = (dysy, dgss)(TeM) = (Hy, x Hyy) N A*(E x E).

(yl y2)

This shows that H is compatible with A and concludes the proof of the linearity of H.



3. Recall that the zero section of E is z : M — E defined by z(z) = 0 € E,. Since z and p
are smooth and po z = Id;y, 2z is an embedding of M into F. Indeed, z is an immersive
injection and is proper. Let us denote Z = z(M) the image of the zero section.

Let y € Z and z = p(y). Then y = 2(x) and T, F = T, Z®V,,. Indeed, dypod,z = Idr,
so that T,Z = d,z(T, M) has dimension n and is transverse to V,, = ker(dyp). That is,
we already have a canonical horizontal direction in 7Ty F which is T} Z.

Let V be any connection on E and let H be the associated linear horizontal sub-bundle
of TE. Let f: M — R be constant equal to 0. Let also x € M and y = z(x) € E. We
have: V.2 =V, (f2) =dof ®2(x)+ f(2)Vzz = 0. Then z € I'(E) is such that z(z) =y
and V,z = 0. Thus, by the previous question, H, = d,2(T,M) =T, Z.

In conclusion, let s € I'(E) and x € M be such that y = s(z) = 0. For any connection
V, the associated horizontal direction in T F is H, = T,,Z. Since Vs is the projection
of d;s onto V,, along H,, it does not depend on the choice of V.

4. We defined h € I'(E* ® E*). We can also see h as a smooth map from A*(E x E) to R,
where A : M — M x M is defined by = +— (z,x). We define similarly Agp: E — Ex E
by Ag(y) = (y,y). For any R > 0, we denote by Tg the tube of radius R in E:

Tie:={y € E | hyy(y,y) = B} = (ho Ap) "' (R?).

We will prove that Tg is a smooth hypersurface of E for any R > 0 and that, if V is a
metric connection on (F, h) and H is the associated linear horizontal sub-bundle of T'E,
then for every y € Tgr, Hy is tangent to T at y.

Note that we say nothing about what happens along Z (that we can think of as 7p) but,
by the previous question, H, does not depend on V if y € Z. In particular, it does not
depend on the fact that V be compatible with h.

Tubes. First note that ho Ag : F — R, is smooth. Let R > 0 and let y € Tg. For
any t > 0, we have h o Ag(ty) = h(ty,ty) = t2h(y,y) = t>R?. Taking the derivative of
this expression at ¢t = 1 we get: dy(ho Ag) -y = 2R? (recall that y € E, ~V, C T,E).
Hence dy(ho Ag) # 0. Thus ho Ag is a submersion on E'\ Z and, for any R > 0, Tg is
smooth hypersurface of E.

Tangency. Let R > 0 and y € Tg, we denote z = p(y). Let V be a connection on E
that is compatible with h and let H denote the associated horizontal sub-bundle of TE.
Let s € I'(E) such that s(z) =y and Vs = 0, so that Hy = d,s(T;M). We have:

dy(ho Ag)odys =dy(hoAgos)=dy(h(s,s)) =2hy(Vgs,s(x)) =0,
where we used the compatibility of V with h, the symmetry of h, and V,s = 0. Finally,
Hy =d,s(TyM) C kerdy(ho Ag) = Ty Tg.

That is, the horizontal sub-bundle H — FE associated with a connection compatible with
the metric h on E is everywhere tangent to the tubes of constant radius in (E, k). Note
that this is also true for R = 0 since 7y = Z and, for any y € Z, H, = T, Z.



