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Memo curvatures

Let (M, g) be a Riemannian manifold and V denote its Levi-Civita connection.

1 Definitions

Riemann curvature. The Riemann curvature of (M, g) is the (i’)—tensor R defined by:

VX,Y,Z e D(TM), R(X,Y)Z=VxVyZ-VyVxZ—VixyZ. (1)

We denote by R the fully-covariant version of the Riemann tensor, that is the (3)—tensor
defined by: N

VX,Y,Z, T € T(TM), R(X,Y,Z,T)=g(R(X,Y)Z,T). (2)
On other terms, E(X, Y, Z,-) = (R(X, Y)Z)b, where * : T, M — TxM is the isomorphism
induced by the metric.

Ricci curvature. The Ricci curvature of (M, g) is obtained by contracting the first covariant
variable in R with the only contravariant variable. That is, Ric is a (3)—tensor defined by:

VY,Z e T(TM),  Ric(Y,Z)=Tr(X — R(X,Y)Z) = Contr(R)(Y, Z). (3)

Scalar curvature. The scalar curvature S of (M, g) is the trace of Ric seen as a bilinear
map on T, M. That is, the trace of its matrix in any orthonormal basis of T, M. In order to
define it intrinsincally, we first need to use one of the musical isomorphisms defined by the
metric in order to get a (})-tensor (i.e. asection of End(7T'M)) and then take the only possible
contraction. Thus,

S = Contr}(Ric*) = Tr(Y — Ric(Y, )¥), (4)

where ¥ : TxM — T,M is the isomorphism induced by g and we applied it to one of the
variables in Ric (which one not important since Ric and g are symmetric).

Sectional curvature. If two vectors u,v € T, M are linearly independent, then the sectional
curvature of the plane P spanned by u and v is:

R(u,v,v,u)

KB = S ayg (o, 0) — glw, o)

(®)

It depends only on P and not on a choice of basis.

2 Symmetries

The Riemann curvature is skew-symmetric in the first two variables and satisfies the first
Bianchi identity. That is, for any vector fields X,Y and Z, we have:

R(X,Y)Z = —R(Y, X)Z, (6)
R(X,Y)Z+R(Y,Z)X + R(Z,X)Y = 0. (7)



Its fully-covariant version presents additional symmetries. For any vector fields X, Y, Z and T,
we have:

R(X,Y,Z,T)=—-R(Y,X,Z,T) = —-R(X,Y,T,Z) = R(Z,T,X,Y), (8)
R(X,Y,Z,T)+R(Y,Z,X,T)+ R(Z,X,Y,T) = 0. (9)

Finally, the Ricci tensor is symmetric. For any Y, Z € I'(T'M), we have:

Ric(Y, Z) = Ric(Z,Y). (10)

3 Expression in local coordinates

Let (z1,...,zy) denote local coordinates on some open subset of M. As usual, we denote by
(8%1, e %) and (dz', ..., dz"™) the associated local frames of TM and T*M respectively.

The matrix of g in these coordinates is (g;j)1<i,j<n, Where g;; = g (8‘?& ) Bay ) We denote by

(9")1<i j<n the coefficients of the inverse matrix.

Christoffel symbols. The Christoffel symbols (T’ w>1<w k<n Of the connection V in these
coordinates are defined by the following relations:

Ly ] 1 — rk 11
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Note that, since the Levi-Civita connection is torsion-free, we have Fk = 1“"‘ for any 1, 7, k.
The Christoffel symbols are given in local coordinates by:

- 1 ¢ 9g9u | 9gj  Ogi;
k _ kl % ] ij
Vi, j, k € [1,n], Iy = ng <8x]~ + o, oz ) (12)
=1

Riemann tensor. Let us define the coefficients (Réjk)1<i7j7k’l<n by:

- o 9\ 0 Z” ;0
B — —_— L g =, 1
By Eq. (6) and (7), for any 4, j, k and [, we have:

Rl =—R.y (14)
Rijk + lez + sz] . (15)

Then we can write R locally as:

> Rli(d2’ Ada)) @ dat ®i. (16)

d
R= Z dezv®d:rj®dx® 921

£ Owy | L
1<4,5,k,I<n 1<i<j<n
1<k, l<n



We proved that for any i, 7,k and [ € [1,n], we have:
I
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Similarly, we define (R;jk1)1<i,jk,i<n DY:

~/ 90 0 0 0
Vi j k1€l a=R(Z, L 2 9 18
(ZWALTAS [[ 7nﬂ7 R]kl R <8¢’L‘l &cj 8$k 8$l> ( )
By Eq. (8) and (9), for any i, j, k and k, we have:
Rijri = —Rjin = —Rijik = Ryij (19)
Rijri + Rjri + Ry = 0. (20)

Then R can be written locally as:

R= Z Rijmda’ @ dad @ da* ® da' = Z Rijm(dz’ Ada?) @ (da¥ Adal).  (21)
1<i,j,k,l<n 1<i<j<n
1<k<i<n

By Eq. (13) and (18), we see that, for any i, j, k and [, we have:

ijl Z Rz]kgml and Z]k; - Z Rzgkmg (22)

Ricci tensor. As above, we can define the coefficient of Ric by:

) 0 0
Vi, k€ [1,n], Ric;, = Ric <01‘J ﬁmk> (23)
so that in local coordinates we have:
Ric = Z Ric;, d2’ @ dz®. (24)

1<, k<n

We deduce from the definition of Ric (cf. Eq. (3)) and Eq. (22) that, for any j and k, we have:

Ricj, = ZRﬁjk = Z Rijkmgmi. (25)

=1 1<i;m<n

Scalar curvature. Since g (%, ) = Z;‘:l gijdx? for any i € [1,n], we have:

. "0
Vi € [1,n], ( > Zgwd:nj and Vi e [1,n], (d:vj)Ij = Zgﬂ%_ (26)
i=1 ‘
Then we get:
Ricf = Z Ricj; dz’d @ (dz*)? Z Ric;; g~ o2, (27)
1<j,k<n 1<i,5,k<n
so that '
Z Ric;, g, (28)
1<j,k<n

3



In nice coordinates. Let us now assume that our coordinates are such that (8%1’ e %)

is orthonormal at z = 0. Then we have (g;;(0))1<i j<n = In = (¢"(0))1<i j<n, Where I, is the
identity matrix of size n. In these coordinates we can simplify Eq. (12), (22), (25) and (28) in
the following way:

x 1 (Ogik 9gjk 9gij
Vi, j,k € [1 Tr0) == [ ==(0 20) — =2(0 29
ivjik € [Ln, 50 =5 (320 + 320 - 520). @
¥i, j k.1 € [1,n], Rij(0) = Rijia(0), (30)
Vi, k € [1,n], Ricj(0) = > Rix(0) = > Rijii(0), (31)
i=1 i=1
S(0) = " Ric;;(0). (32)
j=1
In normal coordinates. If we assume that (z1,...,x,) are normal coordinates around the
point of coordinates x = 0, then we have:
(9i5(@)h<ijen = In + O (H$||2) = (9" ()i jen- (33)
It is then possible to simplify further Eq. (12) and (17) to get:
Vi,j,k € [L,n], T30 =0, (34)
1/ 0%g; 0?gin d%gil i
Vi, j,k,1 € [1 RL(0) = = I (0) — —2 - == = 0) ). (35
b Js 5 E[[ ,n]]’ Uk( ) 2 <6x16xk 81‘18.%'[ 8$]8xk + 6a:j8a:l( )> ( )

4 The case of surfaces

When n = 2, we have R = Rygo(dat A dz?) @ (da! A da?) for any choice of local coordinates
(cf. Eq. (21)). For any p € M, let k(p) = K (T),M ) denote the sectional curvature of the tangent

plane. In any local coordinates centered at p and such that (8%1(0) o (0)) is orthonormal

we have x(p) = R (8%(0), a2 (0), 52-(0), 8%(0)) — —Ri212(0), so that at the point p:
R, = —rk(p)(de' A da?) @ (dat A da?). (36)

A computation gives that, for any vector fields X, Y, Z,T on M, we have:

R(X,Y, Z,T) = r(9(Y, 2)9(X,T) — g(X, Z)g(Y,T)) . (37)

By definition of E, this means that:

RX,Y)Z =kr(g(Y,2)X —g(X,2)Y), (38)
for any X,Y and Z € T'(TM). The definition of Ric as a trace yields:
VY,Z e D(TM),  Ric(Y,Z) = kg(Y, Z). (39)
Finally, we get:
S = 2k. (40)
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