Memo curvatures

Let (M, g) be a Riemannian manifold and ∇ denote its Levi-Civita connection.

1 Definitions

Riemann curvature. The Riemann curvature of (M, g) is the $\binom{3}{1}$-tensor R defined by:

$$
\begin{equation*}
\forall X, Y, Z \in \Gamma(T M), \quad R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{1}
\end{equation*}
$$

We denote by \widetilde{R} the fully-covariant version of the Riemann tensor, that is the $\binom{4}{0}$-tensor defined by:

$$
\begin{equation*}
\forall X, Y, Z, T \in \Gamma(T M), \quad \widetilde{R}(X, Y, Z, T)=g(R(X, Y) Z, T) \tag{2}
\end{equation*}
$$

On other terms, $\widetilde{R}(X, Y, Z, \cdot)=(R(X, Y) Z)^{b}$, where ${ }^{b}: T_{x} M \rightarrow T_{x}^{*} M$ is the isomorphism induced by the metric.

Ricci curvature. The Ricci curvature of (M, g) is obtained by contracting the first covariant variable in R with the only contravariant variable. That is, Ric is a $\binom{2}{0}$-tensor defined by:

$$
\begin{equation*}
\forall Y, Z \in \Gamma(T M), \quad \operatorname{Ric}(Y, Z)=\operatorname{Tr}(X \mapsto R(X, Y) Z)=\operatorname{Contr}_{1}^{1}(R)(Y, Z) \tag{3}
\end{equation*}
$$

Scalar curvature. The scalar curvature S of (M, g) is the trace of Ric seen as a bilinear map on $T_{x} M$. That is, the trace of its matrix in any orthonormal basis of $T_{x} M$. In order to define it intrinsincally, we first need to use one of the musical isomorphisms defined by the metric in order to get a $\binom{1}{1}$-tensor (i.e. a section of $\operatorname{End}(T M)$) and then take the only possible contraction. Thus,

$$
\begin{equation*}
S=\operatorname{Contr}_{1}^{1}\left(\operatorname{Ric}^{\sharp}\right)=\operatorname{Tr}\left(Y \mapsto \operatorname{Ric}(Y, \cdot)^{\sharp}\right), \tag{4}
\end{equation*}
$$

where ${ }^{\#}: T_{x}^{*} M \rightarrow T_{x} M$ is the isomorphism induced by g and we applied it to one of the variables in Ric (which one not important since Ric and g are symmetric).

Sectional curvature. If two vectors $u, v \in T_{x} M$ are linearly independent, then the sectional curvature of the plane P spanned by u and v is:

$$
\begin{equation*}
K(P)=\frac{R(u, v, v, u)}{g(u, u) g(v, v)-g(u, v)^{2}} \tag{5}
\end{equation*}
$$

It depends only on P and not on a choice of basis.

2 Symmetries

The Riemann curvature is skew-symmetric in the first two variables and satisfies the first Bianchi identity. That is, for any vector fields X, Y and Z, we have:

$$
\begin{align*}
& R(X, Y) Z=-R(Y, X) Z \tag{6}\\
& R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0 \tag{7}
\end{align*}
$$

Its fully-covariant version presents additional symmetries. For any vector fields X, Y, Z and T, we have:

$$
\begin{align*}
& \widetilde{R}(X, Y, Z, T)=-\widetilde{R}(Y, X, Z, T)=-\widetilde{R}(X, Y, T, Z)=\widetilde{R}(Z, T, X, Y), \tag{8}\\
& \widetilde{R}(X, Y, Z, T)+\widetilde{R}(Y, Z, X, T)+\widetilde{R}(Z, X, Y, T)=0 \tag{9}
\end{align*}
$$

Finally, the Ricci tensor is symmetric. For any $Y, Z \in \Gamma(T M)$, we have:

$$
\begin{equation*}
\operatorname{Ric}(Y, Z)=\operatorname{Ric}(Z, Y) \tag{10}
\end{equation*}
$$

3 Expression in local coordinates

Let $\left(x_{1}, \ldots, x_{n}\right)$ denote local coordinates on some open subset of M. As usual, we denote by $\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$ and $\left(d x^{1}, \ldots, d x^{n}\right)$ the associated local frames of $T M$ and $T^{*} M$ respectively. The matrix of g in these coordinates is $\left(g_{i j}\right)_{1 \leqslant i, j \leqslant n}$, where $g_{i j}=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)$. We denote by $\left(g^{i j}\right)_{1 \leqslant i, j \leqslant n}$ the coefficients of the inverse matrix.

Christoffel symbols. The Christoffel symbols $\left(\Gamma_{i j}^{k}\right)_{1 \leqslant i, j, k \leqslant n}$ of the connection ∇ in these coordinates are defined by the following relations:

$$
\begin{equation*}
\forall i, j \in \llbracket 1, n \rrbracket, \quad \nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=\sum_{k=1}^{n} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}} . \tag{11}
\end{equation*}
$$

Note that, since the Levi-Civita connection is torsion-free, we have $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$ for any i, j, k. The Christoffel symbols are given in local coordinates by:

$$
\begin{equation*}
\forall i, j, k \in \llbracket 1, n \rrbracket, \quad \Gamma_{i j}^{k}=\frac{1}{2} \sum_{l=1}^{n} g^{k l}\left(\frac{\partial g_{i l}}{\partial x_{j}}+\frac{\partial g_{j l}}{\partial x_{i}}-\frac{\partial g_{i j}}{\partial x_{l}}\right) . \tag{12}
\end{equation*}
$$

Riemann tensor. Let us define the coefficients $\left(R_{i j k}^{l}\right)_{1 \leqslant i, j, k, l \leqslant n}$ by:

$$
\begin{equation*}
\forall i, j, k \in \llbracket 1, n \rrbracket, \quad R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}}=\sum_{l=1}^{n} R_{i j k}^{l} \frac{\partial}{\partial x_{l}} . \tag{13}
\end{equation*}
$$

By Eq. (6) and (7), for any i, j, k and l, we have:

$$
\begin{align*}
& R_{i j k}^{l}=-R_{j i k}^{l} \tag{14}\\
& R_{i j k}^{l}+R_{j k i}^{l}+R_{k i j}^{l}=0 . \tag{15}
\end{align*}
$$

Then we can write R locally as:

$$
\begin{equation*}
R=\sum_{1 \leqslant i, j, k, l \leqslant n} R_{i j k}^{l} d x^{i} \otimes d x^{j} \otimes d x^{k} \otimes \frac{\partial}{\partial x_{l}}=\sum_{\substack{1 \leqslant i<j \leqslant n \\ 1 \leqslant k, l \leqslant n}} R_{i j k}^{l}\left(d x^{i} \wedge d x^{j}\right) \otimes d x^{k} \otimes \frac{\partial}{\partial x_{l}} \tag{16}
\end{equation*}
$$

We proved that for any i, j, k and $l \in \llbracket 1, n \rrbracket$, we have:

$$
\begin{equation*}
R_{i j k}^{l}=\frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}}-\frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}}+\sum_{m=1}^{r} \Gamma_{j k}^{m} \Gamma_{i m}^{l}-\sum_{m=1}^{r} \Gamma_{i k}^{m} \Gamma_{j m}^{l} \tag{17}
\end{equation*}
$$

Similarly, we define $\left(R_{i j k l}\right)_{1 \leqslant i, j, k, l \leqslant n}$ by:

$$
\begin{equation*}
\forall i, j, k, l \in \llbracket 1, n \rrbracket, \quad R_{i j k l}=\widetilde{R}\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{k}}, \frac{\partial}{\partial x_{l}}\right) . \tag{18}
\end{equation*}
$$

By Eq. (8) and (9), for any i, j, k and k, we have:

$$
\begin{align*}
& R_{i j k l}=-R_{j i k l}=-R_{i j l k}=R_{k l i j} \tag{19}\\
& R_{i j k l}+R_{j k i l}+R_{k i j l}=0 \tag{20}
\end{align*}
$$

Then \widetilde{R} can be written locally as:

$$
\begin{equation*}
\widetilde{R}=\sum_{1 \leqslant i, j, k, l \leqslant n} R_{i j k l} d x^{i} \otimes d x^{j} \otimes d x^{k} \otimes d x^{l}=\sum_{\substack{1 \leqslant i<j \leqslant n \\ 1 \leqslant k<l \leqslant n}} R_{i j k l}\left(d x^{i} \wedge d x^{j}\right) \otimes\left(d x^{k} \wedge d x^{l}\right) \tag{21}
\end{equation*}
$$

By Eq. (13) and (18), we see that, for any i, j, k and l, we have:

$$
\begin{equation*}
R_{i j k l}=\sum_{m=1}^{n} R_{i j k}^{m} g_{m l} \quad \text { and } \quad R_{i j k}^{l}=\sum_{m=1}^{n} R_{i j k m} g^{m l} \tag{22}
\end{equation*}
$$

Ricci tensor. As above, we can define the coefficient of Ric by:

$$
\begin{equation*}
\forall j, k \in \llbracket 1, n \rrbracket, \quad \operatorname{Ric}_{j k}=\operatorname{Ric}\left(\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{k}}\right), \tag{23}
\end{equation*}
$$

so that in local coordinates we have:

$$
\begin{equation*}
\text { Ric }=\sum_{1 \leqslant j, k \leqslant n} \operatorname{Ric}_{j k} d x^{j} \otimes d x^{k} \tag{24}
\end{equation*}
$$

We deduce from the definition of Ric (cf. Eq. (3)) and Eq. (22) that, for any j and k, we have:

$$
\begin{equation*}
\operatorname{Ric}_{j k}=\sum_{i=1}^{n} R_{i j k}^{i}=\sum_{1 \leqslant i, m \leqslant n} R_{i j k m} g^{m i} . \tag{25}
\end{equation*}
$$

Scalar curvature. Since $g\left(\frac{\partial}{\partial x_{i}}, \cdot\right)=\sum_{j=1}^{n} g_{i j} d x^{j}$ for any $i \in \llbracket 1, n \rrbracket$, we have:

$$
\begin{equation*}
\forall i \in \llbracket 1, n \rrbracket,\left(\frac{\partial}{\partial x_{i}}\right)^{b}=\sum_{j=1}^{n} g_{i j} d x^{j} \quad \text { and } \quad \forall j \in \llbracket 1, n \rrbracket,\left(d x^{j}\right)^{\sharp}=\sum_{i=1}^{n} g^{j i} \frac{\partial}{\partial x_{i}} . \tag{26}
\end{equation*}
$$

Then we get:

$$
\begin{equation*}
\operatorname{Ric}^{\sharp}=\sum_{1 \leqslant j, k \leqslant n} \operatorname{Ric}_{j k} d x^{j} \otimes\left(d x^{k}\right)^{\sharp}=\sum_{1 \leqslant i, j, k \leqslant n} \operatorname{Ric}_{j k} g^{k i} d x^{j} \otimes \frac{\partial}{\partial x_{i}}, \tag{27}
\end{equation*}
$$

so that

$$
\begin{equation*}
S=\sum_{1 \leqslant j, k \leqslant n} \operatorname{Ric}_{j k} g^{k j} \tag{28}
\end{equation*}
$$

In nice coordinates. Let us now assume that our coordinates are such that $\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$ is orthonormal at $x=0$. Then we have $\left(g_{i j}(0)\right)_{1 \leqslant i, j \leqslant n}=I_{n}=\left(g^{i j}(0)\right)_{1 \leqslant i, j \leqslant n}$, where I_{n} is the identity matrix of size n. In these coordinates we can simplify Eq. (12), (22), (25) and (28) in the following way:

$$
\begin{array}{lrl}
\forall i, j, k \in \llbracket 1, n \rrbracket, & \Gamma_{i j}^{k}(0) & =\frac{1}{2}\left(\frac{\partial g_{i k}}{\partial x_{j}}(0)+\frac{\partial g_{j k}}{\partial x_{i}}(0)-\frac{\partial g_{i j}}{\partial x_{k}}(0)\right), \\
\forall i, j, k, l \in \llbracket 1, n \rrbracket, & R_{i j k}^{l}(0) & =R_{i j k l}(0), \\
\forall j, k \in \llbracket 1, n \rrbracket, & \operatorname{Ric}_{j k}(0) & =\sum_{i=1}^{n} R_{i j k}^{i}(0)=\sum_{i=1}^{n} R_{i j k i}(0), \\
S(0) & =\sum_{j=1}^{n} \operatorname{Ric}_{j j}(0) .
\end{array}
$$

In normal coordinates. If we assume that $\left(x_{1}, \ldots, x_{n}\right)$ are normal coordinates around the point of coordinates $x=0$, then we have:

$$
\begin{equation*}
\left(g_{i j}(x)\right)_{1 \leqslant i, j \leqslant n}=I_{n}+O\left(\|x\|^{2}\right)=\left(g^{i j}(x)\right)_{1 \leqslant i, j \leqslant n} . \tag{33}
\end{equation*}
$$

It is then possible to simplify further Eq. (12) and (17) to get:

$$
\begin{array}{ll}
\forall i, j, k \in \llbracket 1, n \rrbracket, \quad \Gamma_{i j}^{k}(0)=0, \\
\forall i, j, k, l \in \llbracket 1, n \rrbracket, \quad R_{i j k}^{l}(0)=\frac{1}{2}\left(\frac{\partial^{2} g_{j l}}{\partial x_{i} \partial x_{k}}(0)-\frac{\partial^{2} g_{j k}}{\partial x_{i} \partial x_{l}}(0)-\frac{\partial^{2} g_{i l}}{\partial x_{j} \partial x_{k}}(0)+\frac{\partial^{2} g_{i k}}{\partial x_{j} \partial x_{l}}(0)\right) . \tag{35}
\end{array}
$$

4 The case of surfaces

When $n=2$, we have $\widetilde{R}=R_{1212}\left(d x^{1} \wedge d x^{2}\right) \otimes\left(d x^{1} \wedge d x^{2}\right)$ for any choice of local coordinates (cf. Eq. (21)). For any $p \in M$, let $\kappa(p)=K\left(T_{p} M\right)$ denote the sectional curvature of the tangent plane. In any local coordinates centered at p and such that $\left(\frac{\partial}{\partial x_{1}}(0), \frac{\partial}{\partial x_{2}}(0)\right)$ is orthonormal we have $\kappa(p)=\widetilde{R}\left(\frac{\partial}{\partial x_{1}}(0), \frac{\partial}{\partial x_{2}}(0), \frac{\partial}{\partial x_{2}}(0), \frac{\partial}{\partial x_{1}}(0)\right)=-R_{1212}(0)$, so that at the point p :

$$
\begin{equation*}
\widetilde{R}_{p}=-\kappa(p)\left(d x^{1} \wedge d x^{2}\right) \otimes\left(d x^{1} \wedge d x^{2}\right) . \tag{36}
\end{equation*}
$$

A computation gives that, for any vector fields X, Y, Z, T on M, we have:

$$
\begin{equation*}
\widetilde{R}(X, Y, Z, T)=\kappa(g(Y, Z) g(X, T)-g(X, Z) g(Y, T)) . \tag{37}
\end{equation*}
$$

By definition of \widetilde{R}, this means that:

$$
\begin{equation*}
R(X, Y) Z=\kappa(g(Y, Z) X-g(X, Z) Y), \tag{38}
\end{equation*}
$$

for any X, Y and $Z \in \Gamma(T M)$. The definition of Ric as a trace yields:

$$
\begin{equation*}
\forall Y, Z \in \Gamma(T M), \quad \operatorname{Ric}(Y, Z)=\kappa g(Y, Z) \tag{39}
\end{equation*}
$$

Finally, we get:

$$
\begin{equation*}
S=2 \kappa . \tag{40}
\end{equation*}
$$

