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Memo curvatures

Let (M, g) be a Riemannian manifold and ∇ denote its Levi–Civita connection.

1 Definitions

Riemann curvature. The Riemann curvature of (M, g) is the
(
3
1

)
-tensor R defined by:

∀X,Y, Z ∈ Γ(TM), R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (1)

We denote by R̃ the fully-covariant version of the Riemann tensor, that is the
(
4
0

)
-tensor

defined by:
∀X,Y, Z, T ∈ Γ(TM), R̃(X,Y, Z, T ) = g(R(X,Y )Z, T ). (2)

On other terms, R̃(X,Y, Z, ·) = (R(X,Y )Z)[, where [ : TxM → T ∗
xM is the isomorphism

induced by the metric.

Ricci curvature. The Ricci curvature of (M, g) is obtained by contracting the first covariant
variable in R with the only contravariant variable. That is, Ric is a

(
2
0

)
-tensor defined by:

∀Y,Z ∈ Γ(TM), Ric(Y, Z) = Tr (X 7→ R(X,Y )Z) = Contr11(R)(Y, Z). (3)

Scalar curvature. The scalar curvature S of (M, g) is the trace of Ric seen as a bilinear
map on TxM . That is, the trace of its matrix in any orthonormal basis of TxM . In order to
define it intrinsincally, we first need to use one of the musical isomorphisms defined by the
metric in order to get a

(
1
1

)
-tensor (i.e. a section of End(TM)) and then take the only possible

contraction. Thus,
S = Contr11(Ric]) = Tr(Y 7→ Ric(Y, ·)]), (4)

where ] : T ∗
xM → TxM is the isomorphism induced by g and we applied it to one of the

variables in Ric (which one not important since Ric and g are symmetric).

Sectional curvature. If two vectors u, v ∈ TxM are linearly independent, then the sectional
curvature of the plane P spanned by u and v is:

K(P ) =
R(u, v, v, u)

g(u, u)g(v, v)− g(u, v)2
. (5)

It depends only on P and not on a choice of basis.

2 Symmetries

The Riemann curvature is skew-symmetric in the first two variables and satisfies the first
Bianchi identity. That is, for any vector fields X,Y and Z, we have:

R(X,Y )Z = −R(Y,X)Z, (6)
R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0. (7)
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Its fully-covariant version presents additional symmetries. For any vector fields X,Y, Z and T ,
we have:

R̃(X,Y, Z, T ) = −R̃(Y,X,Z, T ) = −R̃(X,Y, T, Z) = R̃(Z, T,X, Y ), (8)

R̃(X,Y, Z, T ) + R̃(Y, Z,X, T ) + R̃(Z,X, Y, T ) = 0. (9)

Finally, the Ricci tensor is symmetric. For any Y, Z ∈ Γ(TM), we have:

Ric(Y, Z) = Ric(Z, Y ). (10)

3 Expression in local coordinates

Let (x1, . . . , xn) denote local coordinates on some open subset of M . As usual, we denote by(
∂

∂x1
, . . . , ∂

∂xn

)
and (dx1, . . . , dxn) the associated local frames of TM and T ∗M respectively.

The matrix of g in these coordinates is (gij)16i,j6n, where gij = g
(

∂
∂xi
, ∂
∂xj

)
. We denote by

(gij)16i,j6n the coefficients of the inverse matrix.

Christoffel symbols. The Christoffel symbols (Γk
ij)16i,j,k6n of the connection ∇ in these

coordinates are defined by the following relations:

∀i, j ∈ J1, nK, ∇ ∂
∂xi

∂

∂xj
=

n∑
k=1

Γk
ij

∂

∂xk
. (11)

Note that, since the Levi–Civita connection is torsion-free, we have Γk
ij = Γk

ji for any i, j, k.
The Christoffel symbols are given in local coordinates by:

∀i, j, k ∈ J1, nK, Γk
ij =

1

2

n∑
l=1

gkl
(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
. (12)

Riemann tensor. Let us define the coefficients (Rl
ijk)16i,j,k,l6n by:

∀i, j, k ∈ J1, nK, R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
=

n∑
l=1

Rl
ijk

∂

∂xl
. (13)

By Eq. (6) and (7), for any i, j, k and l, we have:

Rl
ijk = −Rl

jik (14)

Rl
ijk +Rl

jki +Rl
kij = 0. (15)

Then we can write R locally as:

R =
∑

16i,j,k,l6n

Rl
ijkdx

i ⊗ dxj ⊗ dxk ⊗ ∂

∂xl
=

∑
16i<j6n
16k,l6n

Rl
ijk(dxi ∧ dxj)⊗ dxk ⊗ ∂

∂xl
. (16)
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We proved that for any i, j, k and l ∈ J1, nK, we have:

Rl
ijk =

∂Γl
jk

∂xi
−
∂Γl

ik

∂xj
+

r∑
m=1

Γm
jkΓl

im −
r∑

m=1

Γm
ikΓl

jm. (17)

Similarly, we define (Rijkl)16i,j,k,l6n by:

∀i, j, k, l ∈ J1, nK, Rijkl = R̃

(
∂

∂xi
,
∂

∂xj
,
∂

∂xk
,
∂

∂xl

)
. (18)

By Eq. (8) and (9), for any i, j, k and k, we have:

Rijkl = −Rjikl = −Rijlk = Rklij (19)
Rijkl +Rjkil +Rkijl = 0. (20)

Then R̃ can be written locally as:

R̃ =
∑

16i,j,k,l6n

Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl =

∑
16i<j6n
16k<l6n

Rijkl(dx
i ∧ dxj)⊗ (dxk ∧ dxl). (21)

By Eq. (13) and (18), we see that, for any i, j, k and l, we have:

Rijkl =
n∑

m=1

Rm
ijkgml and Rl

ijk =
n∑

m=1

Rijkmg
ml. (22)

Ricci tensor. As above, we can define the coefficient of Ric by:

∀j, k ∈ J1, nK, Ricjk = Ric

(
∂

∂xj
,
∂

∂xk

)
, (23)

so that in local coordinates we have:

Ric =
∑

16j,k6n

Ricjk dx
j ⊗ dxk. (24)

We deduce from the definition of Ric (cf. Eq. (3)) and Eq. (22) that, for any j and k, we have:

Ricjk =
n∑

i=1

Ri
ijk =

∑
16i,m6n

Rijkmg
mi. (25)

Scalar curvature. Since g
(

∂
∂xi
, ·
)

=
∑n

j=1 gijdx
j for any i ∈ J1, nK, we have:

∀i ∈ J1, nK,
(
∂

∂xi

)[

=

n∑
j=1

gijdx
j and ∀j ∈ J1, nK,

(
dxj
)]

=

n∑
i=1

gji
∂

∂xi
. (26)

Then we get:

Ric] =
∑

16j,k6n

Ricjk dx
j ⊗ (dxk)] =

∑
16i,j,k6n

Ricjk g
kidxj ⊗ ∂

∂xi
, (27)

so that
S =

∑
16j,k6n

Ricjk g
kj . (28)
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In nice coordinates. Let us now assume that our coordinates are such that
(

∂
∂x1

, . . . , ∂
∂xn

)
is orthonormal at x = 0. Then we have (gij(0))16i,j6n = In = (gij(0))16i,j6n, where In is the
identity matrix of size n. In these coordinates we can simplify Eq. (12), (22), (25) and (28) in
the following way:

∀i, j, k ∈ J1, nK, Γk
ij(0) =

1

2

(
∂gik
∂xj

(0) +
∂gjk
∂xi

(0)− ∂gij
∂xk

(0)

)
, (29)

∀i, j, k, l ∈ J1, nK, Rl
ijk(0) = Rijkl(0), (30)

∀j, k ∈ J1, nK, Ricjk(0) =
n∑

i=1

Ri
ijk(0) =

n∑
i=1

Rijki(0), (31)

S(0) =
n∑

j=1

Ricjj(0). (32)

In normal coordinates. If we assume that (x1, . . . , xn) are normal coordinates around the
point of coordinates x = 0, then we have:

(gij(x))16i,j6n = In +O
(
‖x‖2

)
= (gij(x))16i,j6n. (33)

It is then possible to simplify further Eq. (12) and (17) to get:

∀i, j, k ∈ J1, nK, Γk
ij(0) = 0, (34)

∀i, j, k, l ∈ J1, nK, Rl
ijk(0) =

1

2

(
∂2gjl
∂xi∂xk

(0)−
∂2gjk
∂xi∂xl

(0)− ∂2gil
∂xj∂xk

(0) +
∂2gik
∂xj∂xl

(0)

)
. (35)

4 The case of surfaces

When n = 2, we have R̃ = R1212(dx
1 ∧ dx2)⊗ (dx1 ∧ dx2) for any choice of local coordinates

(cf. Eq. (21)). For any p ∈M , let κ(p) = K(TpM) denote the sectional curvature of the tangent
plane. In any local coordinates centered at p and such that

(
∂

∂x1
(0), ∂

∂x2
(0)
)
is orthonormal

we have κ(p) = R̃
(

∂
∂x1

(0), ∂
∂x2

(0), ∂
∂x2

(0), ∂
∂x1

(0)
)

= −R1212(0), so that at the point p:

R̃p = −κ(p)(dx1 ∧ dx2)⊗ (dx1 ∧ dx2). (36)

A computation gives that, for any vector fields X,Y, Z, T on M , we have:

R̃(X,Y, Z, T ) = κ (g(Y,Z)g(X,T )− g(X,Z)g(Y, T )) . (37)

By definition of R̃, this means that:

R(X,Y )Z = κ (g(Y, Z)X − g(X,Z)Y ) , (38)

for any X,Y and Z ∈ Γ(TM). The definition of Ric as a trace yields:

∀Y,Z ∈ Γ(TM), Ric(Y,Z) = κg(Y,Z). (39)

Finally, we get:
S = 2κ. (40)
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