Le groupe affine

Exercice 1. Déterminer le groupe affine de K muni de sa structure canonique de droite affine.

Exercice 2 (Groupe des homothéties-translations). Soit \mathcal{E} un \mathbb{K} -espace affine, on note $\mathcal{HT}(\mathcal{E})$ le sous-groupe des homothéties-translations de \mathcal{E} .

- 1. Soit $f \in Aff(\mathcal{E})$ envoyant tout sous-espace affine de \mathcal{E} sur un sous-espace parallèle. Montrer que $f \in \mathcal{HT}(\mathcal{E})$.
- 2. Soit $f \in \mathcal{HT}(\mathcal{E})$, déterminer les sous-espaces stables par f.
- 3. Déterminer le centre de $\mathcal{HT}(\mathcal{E})$.
- 4. Si $\mathbb{K} = \mathbb{R}$, montrer que les homothéties engendrent $\mathcal{HT}(\mathcal{E})$. Que se passe-t-il sur les autres corps?

Exercice 3 (Produits semi-directs). Soit (\mathcal{E}, E) un \mathbb{K} -espace affine, montrer qu'on a les décompositions en produits semi-directs suivantes.

- $Aff(\mathcal{E}) = E \rtimes GL(E)$,

Exercice 4 (Invariants et obstructions). Soit \mathcal{E} un espace affine.

- 1. Montrer que $Aff(\mathcal{E})$ agit simplement transitivement sur les repères affines (resp. cartésiens) de \mathcal{E} .
- 2. Montrer que Aff (\mathcal{E}) agit 2-transitivement sur \mathcal{E} . Identifier l'obstruction à ce que cette action soit 3-transitive.
- 3. Montrer que Aff(\mathcal{E}) agit transitivement sur l'ensemble des droites affines de \mathcal{E} . Identifier l'obstruction à ce que cette action soit 2-transitive.
- 4. Trouver une obstruction à ce que l'action $\mathcal{HT}(\mathcal{E}) \curvearrowright \mathcal{E}$ soit 2-transitive.
- 5. Donner un invariant total pour l'action de $Aff(\mathcal{E})$ sur les sous-espaces affines de \mathcal{E} . Même question lorsqu'on restreint l'action à $\mathcal{HT}(\mathcal{E})$ à la source.

Exercice 5 (Représentation linéaire du groupe affine). Soit V un espace vectoriel de dimension n+1 et $\eta \in V^* \setminus \{0\}$.

- 1. Montrer que $\mathcal{E} := \eta^{-1}(\{1\})$ est un espace affine de direction $\ker(\eta)$. Montrer que le sous-groupe $\{f \in GL(V) \mid \eta \circ f = \eta\}$ est isomorphe au groupe affine de \mathcal{E} .
- 2. En déduire que le groupe affine d'un \mathbb{K} -espace affine de dimension n est isomorphe au sous-groupe de $GL_{n+1}(\mathbb{K})$ dont les éléments sont les matrices de la forme :

$$\begin{pmatrix} & & & a_1 \\ & A & & \vdots \\ & & & a_n \\ \hline 0 & \cdots & 0 & 1 \end{pmatrix},$$

avec $A \in GL_n(\mathbb{K})$.