Applications affines

Exercice 1. Soient $f: \mathcal{E} \to \mathcal{F}$ une application affine entre espaces affines réels et $A, B \in \mathcal{E}$. Montrer que f([A, B]) = [f(A)f(B)].

Exercice 2. Soient f_1, \ldots, f_n des applications affines de \mathcal{E} dans \mathcal{F} et $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que $m := \sum \lambda_i \neq 0$. Montrer que $\frac{1}{m} \sum \lambda_i f_i$ définit une application affine de \mathcal{E} dans \mathcal{F} .

Exercice 3 (Fresnel, p. 31). Soient (\mathcal{E}, E) et (\mathcal{F}, F) deux \mathbb{K} -espaces affines, notons $\mathrm{Aff}(\mathcal{E}, \mathcal{F})$ (resp. $\mathcal{L}(E, F)$) l'ensemble des applications affines (resp. linéaires) de \mathcal{E} dans \mathcal{F} (resp. de E dans F). Montrer que $\mathrm{Aff}(\mathcal{E}, \mathcal{F})$ est naturellement muni d'une structure de \mathbb{K} -espace affine de direction $F \times \mathcal{L}(E, F)$. Donner sa dimension en fonction de celles de \mathcal{E} et \mathcal{F} .

Exercice 4 (Applications affines et vectorialisé). Soient $f:(\mathcal{E},E)\to (\mathcal{F},F)$ et $O\in \mathcal{E}$. On rappelle que $\Theta_O:E\to \mathcal{E},u\mapsto O+u$. Montrer que f est affine si et seulement si $\Theta_{f(O)}^{-1}f\Theta_O$ est linéaire de E dans F. Dans ce cas, montrer que $\overrightarrow{f}=\Theta_{f(O)}^{-1}f\Theta_O$.

Exercice 5. Montrer qu'une application linéaire $f: \mathcal{E} \to \mathcal{F}$ est injective (resp. surjective, resp. bijective) si et seulement si $f: E \to F$ l'est.

Exercice 6. Soit $f: \mathcal{E} \to \mathcal{F}$ affine. Montrer que si f est injective l'image d'une famille libre est libre et que si f est surjective l'image d'une famille génératrice est génératrice.

Exercice 7 (Fresnel, p. 30). Soient $f_i : \mathcal{E} \to K$ des formes affines non nulles où $i \in [1, k]$ et $k \leq \dim(\mathcal{E})$. Montrer que $\bigcap f_i^{-1}(c_i)$ est un sous-espace affine non vide de codimension k si et seulement si $(\overrightarrow{f_1}, \ldots, \overrightarrow{f_k})$ est une famille libre de E^* .

Exercice 8. Soient $f: \mathcal{E} \to \mathcal{E}$ affine et $A \in \mathcal{E}$ tels que l'orbite de A sous l'action de f soit finie, de cardinal non divisible par la caractéristique du corps de base. Montrer que f a un point fixe.

Exercice 9 (Composée d'homothéties). Décrire la nature et les éléments caractéristiques de la composée de l'homothétie de centre A et de rapport α avec l'homothétie de centre B et de rapport β .

Exercice 10 (Conjugaison). Soit $f: \mathcal{E} \to \mathcal{E}$ affine, décrire $f \circ t_u \circ f^{-1}$ et $f \circ h_{A,\alpha} \circ f^{-1}$, où t_u est la translation de vecteur u et $h_{A,\alpha}$ est l'homothétie de centre A et de rapport α .

Exercice 11. Soit $p:\mathcal{E}\to\mathcal{E}$ une application affine, montrer que les propositions suivantes sont équivalentes :

- 1. p est une projection,
- $2. p \circ p = p$
- 3. $\vec{p} \circ \vec{p} = \vec{p}$ et p a un point fixe.

Exercice 12 (Audin, p. 44). Soit ABC un vrai triangle du plan affine réel et $M_0 \in (AB)$. On construit M_1 l'intersection de (BC) avec la parallèle à (AC) passant par M_0 , puis M_2 l'intersection de (AC) avec la parallèle à (AB) passant par M_1 , etc. Montrer que $M_6 = M_0$.