Exterior differential, Stokes Theorem

Exercice 1 (Warm-up). Compute $d\omega$, where ω is the following *n*-form on \mathbb{R}^{n+1} :

$$x \mapsto \sum_{i=0}^{n} (-1)^{i} x_{i} dx^{0} \wedge \dots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \dots \wedge dx^{n}.$$

Exercice 2 (Angle form). Let α be the 1-form $(x, y) \mapsto \frac{xdy - ydx}{x^2 + y^2}$ on $\mathbb{R}^2 \setminus \{0\}$ and let $f: (r, \theta) \mapsto (r \cos(\theta), r \sin(\theta))$ from $\mathbb{R}^*_+ \times \mathbb{R}$ to \mathbb{R}^2 .

- 1. Compute $d\alpha$.
- 2. Is $f^*(\alpha)$ a closed form? Is it exact?
- 3. Is α exact? *Hint:* consider $i^*\alpha$ where $i: \mathbb{S}^1 \to \mathbb{R}^2$ is the canonical injection and prove that if $i^*\alpha$ was exact, then it would vanish somewhere on \mathbb{S}^1 .

Exercice 3. Let ω be a volume form on a manifold M. Prove that around any point of M there exist local coordinates (x_1, \ldots, x_n) such that $\omega = dx^1 \wedge \cdots \wedge dx^n$.

- **Exercice 4** (div, rot and all that kind of things). 1. Let $(E, \langle \cdot, \cdot \rangle)$ be an oriented Euclidean space of dimension 3. Let X be a vector field on E, then $\langle X, \cdot \rangle$ defines a 1-form. We define $\operatorname{rot}(X)$ as the only vector field such that $\operatorname{rot}(X) \sqcup dV = d(\langle X, \cdot \rangle) \in \Omega^2(E)$. Compute the expression of $\operatorname{rot}(X)$ in a direct orthonormal basis of E.
 - 2. Let M be a smooth manifold equipped with a volume form ω . Let X be a vector field on M, we define $\operatorname{div}(X)$ as the only function such that $d(X \sqcup \omega) = \operatorname{div}(X)\omega$. Compute the expression of $\operatorname{div}(X)$ in local coordinates such that $\omega = dx^1 \wedge \cdots \wedge dx^n$.
 - 3. Prove that $\operatorname{div}(X) \equiv 0$ if and only if the flow of X is volume preserving.
- **Exercice 5** (Stokes formula). 1. Let M be a compact oriented manifold without boundary and let $\alpha \in \Omega^{n-1}(M)$, compute $\int_{M} d\alpha$.
 - 2. Is it possible for a volume form on M to be exact?
 - 3. Is it possible on an oriented manifold without boundary that is not compact?