Multilinear algebra

Exercise 1 (Tensor products over \mathbb{R}). Let *E* and *F* be two \mathbb{R} -vector spaces of dimension *n* and *m*, respectively. We denote by $e = (e_i)$ a basis of *E* and by $f = (f_i)$ a basis of *F*.

- 1. Let $\alpha \in (E^*)^{\otimes k}$, identify the coordinates of α in the basis of $(E^*)^{\otimes k}$ associated with e.
- 2. Give a natural isomorphism between $E^* \otimes F$ and $\mathcal{L}(E, F)$.
- 3. Let $L: E \to F$ be a linear map whose matrix is $M = (m_j^i)$ in the bases e and f. We define $L^*: \alpha \mapsto \alpha \circ L$ from F^* to E^* . Give the matrix of L^* in the dual bases e^* and f^* .

Exercise 2 (Exterior product and determinant). Let E be an *n*-dimensional vector space. We denote by (e_i) a basis of E and by (e^i) its dual basis. Let $k \in \{1, \ldots, n\}$ an integer.

- 1. Let α and β be multilinear forms, check that $Alt(\alpha \otimes \beta) = Alt(Alt(\alpha) \otimes Alt(\beta))$.
- 2. Let $\alpha^1, \ldots, \alpha^k \in E^*$, show that $(\alpha^1 \wedge \cdots \wedge \alpha^k) (v_1, \ldots, v_k) = \det ((\alpha^i(v_j))_{1 \leq i,j \leq k})$, for any $v_1, \ldots, v_k \in E$.
- 3. For any $I \subset \{1, \ldots, n\}$, we denote by $\operatorname{Card}(I)$ its cardinal and by $|I| = \sum_{i \in I} i$ its length. Using the associativity and anticommutativity of \wedge and the previous question, prove the following "Laplace expansion": for any matrix M of dimension n,

$$\det(M) = \sum_{\substack{I,J \subset \{1,...,n\}\\ \operatorname{Card}(I) = k = \operatorname{Card}(J)}} (-1)^{|I| + |J|} \det(M_{I,J}) \det(M_{I^C,J^C}),$$

where I^C (resp. J^C) is the complementary set of I (resp. J) and $M_{I,J}$ is the submatrix of M formed by the coefficients which indices lie in $I \times J$. What happens when k = 1?

Exercise 3 (Pullback). Let E and F be two vector spaces and $L: E \to F$ be a linear map.

- 1. For any alternating forms α and β , show that $L^*(\alpha \wedge \beta) = L^*(\alpha) \wedge L^*(\beta)$.
- 2. Let (e_j) and (f_i) be bases of E and F respectively. We denote by $M = (m_j^i)$ the matrix of L in these bases. Let $J = \{j_1, \ldots, j_k\} \subset \{1, \ldots, n\}$ be such that $1 \leq j_1 < \cdots < j_k \leq n$, we denote $e^J = e^{j_1} \land \cdots \land e^{j_k}$ and use similar notations for F. Let $\omega = \sum \omega_I f^I$, where we sum over subsets $I \subset \{1, \ldots, n\}$ of cardinal k. Express $L^*(\omega)$ in the basis (e^J) .
- **Exercise 4** (Exterior algebra). 1. Is there an alternating multilinear form α on a vector space E such that $\alpha \wedge \alpha \neq 0$?
 - 2. Is there a non-zero alternating form commuting with any other?

Exercise 5 (Decomposable forms). Let E be a vector space of dimension n. An alternating k-linear form on E is said to be *decomposable* if it can be written as the alternating product of k linear forms. If not, it is said *indecomposable*.

- 1. Show that linear forms and alternating *n*-linear forms are always decomposable.
- 2. Let $\alpha \in E^* \setminus \{0\}$, show that an alternating k-linear form $\omega \neq 0$ is divisible by α (that is, can be written as $\alpha \wedge \beta$) if and only if $\alpha \wedge \omega = 0$.

- 3. Let $(\alpha, \beta, \gamma, \delta)$ be linearly independent in E^* . Is the 2-form $\omega = \alpha \wedge \beta + \gamma \wedge \delta$ decomposable?
- 4. Is an (n-1)-form ω always decomposable (assuming n > 1)? Consider $\phi_{\omega} : \alpha \mapsto \alpha \wedge \omega$ from E^* to $\bigwedge^n E^*$.