Multilinear algebra

Exercise 1 (Tensor products over \mathbb{R}). Let E and F be two \mathbb{R}-vector spaces of dimension n and m, respectively. We denote by $e=\left(e_{j}\right)$ a basis of E and by $f=\left(f_{i}\right)$ a basis of F.

1. Let $\alpha \in\left(E^{*}\right)^{\otimes k}$, identify the coordinates of α in the basis of $\left(E^{*}\right)^{\otimes k}$ associated with e.
2. Give a natural isomorphism between $E^{*} \otimes F$ and $\mathcal{L}(E, F)$.
3. Let $L: E \rightarrow F$ be a linear map whose matrix is $M=\left(m_{j}^{i}\right)$ in the bases e and f. We define $L^{*}: \alpha \mapsto \alpha \circ L$ from F^{*} to E^{*}. Give the matrix of L^{*} in the dual bases e^{*} and f^{*}.

Exercise 2 (Exterior product and determinant). Let E be an n-dimensional vector space. We denote by $\left(e_{i}\right)$ a basis of E and by $\left(e^{i}\right)$ its dual basis. Let $k \in\{1, \ldots, n\}$ an integer.

1. Let α and β be multilinear forms, check that $\operatorname{Alt}(\alpha \otimes \beta)=\operatorname{Alt}(\operatorname{Alt}(\alpha) \otimes \operatorname{Alt}(\beta))$.
2. Let $\alpha^{1}, \ldots, \alpha^{k} \in E^{*}$, show that $\left(\alpha^{1} \wedge \cdots \wedge \alpha^{k}\right)\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\left(\alpha^{i}\left(v_{j}\right)\right)_{1 \leqslant i, j \leqslant k}\right)$, for any $v_{1}, \ldots, v_{k} \in E$.
3. For any $I \subset\{1, \ldots, n\}$, we denote by $\operatorname{Card}(I)$ its cardinal and by $|I|=\sum_{i \in I} i$ its length. Using the associativity and anticommutativity of \wedge and the previous question, prove the following "Laplace expansion": for any matrix M of dimension n,

$$
\operatorname{det}(M)=\sum_{\substack{I, J \subset\{1, \ldots, n\} \\ \operatorname{Card}(I)=k=\operatorname{Card}(J)}}(-1)^{|I|+|J|} \operatorname{det}\left(M_{I, J}\right) \operatorname{det}\left(M_{I^{C}, J^{C}}\right)
$$

where I^{C} (resp. J^{C}) is the complementary set of I (resp. J) and $M_{I, J}$ is the submatrix of M formed by the coefficients which indices lie in $I \times J$. What happens when $k=1$?

Exercise 3 (Pullback). Let E and F be two vector spaces and $L: E \rightarrow F$ be a linear map.

1. For any alternating forms α and β, show that $L^{*}(\alpha \wedge \beta)=L^{*}(\alpha) \wedge L^{*}(\beta)$.
2. Let $\left(e_{j}\right)$ and $\left(f_{i}\right)$ be bases of E and F respectively. We denote by $M=\left(m_{j}^{i}\right)$ the matrix of L in these bases. Let $J=\left\{j_{1}, \ldots, j_{k}\right\} \subset\{1 \ldots, n\}$ be such that $1 \leqslant j_{1}<\cdots<j_{k} \leqslant n$, we denote $e^{J}=e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}$ and use similar notations for F. Let $\omega=\sum \omega_{I} f^{I}$, where we sum over subsets $I \subset\{1, \ldots, n\}$ of cardinal k. Express $L^{*}(\omega)$ in the basis $\left(e^{J}\right)$.

Exercise 4 (Exterior algebra). 1. Is there an alternating multilinear form α on a vector space E such that $\alpha \wedge \alpha \neq 0$?
2. Is there a non-zero alternating form commuting with any other?

Exercise 5 (Decomposable forms). Let E be a vector space of dimension n. An alternating k-linear form on E is said to be decomposable if it can be written as the alternating product of k linear forms. If not, it is said indecomposable.

1. Show that linear forms and alternating n-linear forms are always decomposable.
2. Let $\alpha \in E^{*} \backslash\{0\}$, show that an alternating k-linear form $\omega \neq 0$ is divisible by α (that is, can be written as $\alpha \wedge \beta$) if and only if $\alpha \wedge \omega=0$.
3. Let $(\alpha, \beta, \gamma, \delta)$ be linearly independent in E^{*}. Is the 2-form $\omega=\alpha \wedge \beta+\gamma \wedge \delta$ decomposable?
4. Is an ($n-1$)-form ω always decomposable (assuming $n>1$)? Consider $\phi_{\omega}: \alpha \mapsto \alpha \wedge \omega$ from E^{*} to $\bigwedge^{n} E^{*}$.
