Frobenius Theorem

Exercise 1. Let $X:(x, y, z) \mapsto \frac{\partial}{\partial x}-y \frac{\partial}{\partial z}$ and $Y:(x, y, z) \mapsto \frac{\partial}{\partial y}$ be two vectors fields on \mathbb{R}^{3}.

1. Prove that $\forall p \in \mathbb{R}^{3},(X(p), Y(p))$ is linearly independent.
2. Compute $[X, Y]$. Is the distribution spanned by X and Y integrable?
3. Recover this result without using Frobenius Theorem.

Exercise 2. Let $X:(x, y) \mapsto x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ et $Y:(x, y) \mapsto x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$ be two vector fields on \mathbb{R}^{2}.

1. Compute $[X, Y]$. Are there coordinates (s, t) on some neighborhood of $(1,0)$ such that $X=\frac{\partial}{\partial s}$ and $Y=\frac{\partial}{\partial t} ?$
2. Compute the flows of X and Y.
3. Build explicit coordinates (s, t) on some neighborhood of $(1,0)$ such that $X=\frac{\partial}{\partial s}$ and $Y=\frac{\partial}{\partial t}$.
