Frobenius Theorem

Exercise 1. Let $X : (x, y, z) \mapsto \frac{\partial}{\partial x} - y \frac{\partial}{\partial z}$ and $Y : (x, y, z) \mapsto \frac{\partial}{\partial y}$ be two vectors fields on \mathbb{R}^3 .

- 1. Prove that $\forall p \in \mathbb{R}^3$, (X(p), Y(p)) is linearly independent.
- 2. Compute [X, Y]. Is the distribution spanned by X and Y integrable?
- 3. Recover this result without using Frobenius Theorem.

Exercise 2. Let $X : (x, y) \mapsto x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ et $Y : (x, y) \mapsto x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$ be two vector fields on \mathbb{R}^2 .

- 1. Compute [X, Y]. Are there coordinates (s, t) on some neighborhood of (1, 0) such that $X = \frac{\partial}{\partial s}$ and $Y = \frac{\partial}{\partial t}$?
- 2. Compute the flows of X and Y.
- 3. Build explicit coordinates (s,t) on some neighborhood of (1,0) such that $X = \frac{\partial}{\partial s}$ and $Y = \frac{\partial}{\partial t}$.