Vector fields

Exercise 1 (Flow box). Let M be a compact manifold and let X be a vector field on M. Let $p \in M$ be such that $X(p) \neq 0$, prove that there exist local coordinates around p such that $X = \frac{\partial}{\partial x_1}$.

Are the orbits of X submanifolds of M?

- **Exercise 2** (Transitivity of the group of diffeomorphisms). 1. Let *a* and *b* in the open ball $B = \{x \in \mathbb{R}^n \mid ||x|| < 1\}$. Prove that there exists a diffeomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ such that f(a) = b and f = id on $\mathbb{R}^n \setminus B$.
 - 2. Let M be a connected manifold, prove that it is path connected.
 - 3. If moreover dim $(M) \ge 2$, prove that the natural action of the group of diffeomorphisms of M is k-transitive for any $k \in \mathbb{N}^*$.
 - 4. What happens if $\dim(M) = 1$?