Tangent spaces, tangent maps

Exercise 1 (Tangent space of a submanifold). Describe the tangent space $T_{p} M \subset T_{p} N$ of the submanifold M in N at a point p, for each of the four characterizations of a submanifold.

Exercise 2 (Tangent space of a product). Let M and N be two smooth manifolds, find a natural isomorphism between $T_{(p, q)}(M \times N)$ and $T_{p} M \times T_{q} N$.

Exercise 3 (Computation of a differential). Compute the differential of $\bar{F}: \mathbb{T}^{2} \rightarrow \mathbb{S}^{2}$ defined as the quotient of the map from \mathbb{R}^{2} to \mathbb{S}^{2} :

$$
F:(x, y) \mapsto(\cos (2 \pi x) \cos (2 \pi y), \cos (2 \pi x) \sin (2 \pi y), \sin (2 \pi x)) .
$$

On which set is \bar{F} a local diffeomorphism? Is \bar{F} restricted to this domain a global diffeomorphism?

Exercise 4. Is it possible to immerse a compact manifold M of dimension $n>0$ in \mathbb{R}^{n} ?

