Manifolds, differentiable maps

- **Exercise 1** (The sphere). 1. Prove that $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1} \mid ||x||_2 = 1\}$ is a smooth manifold of dimension n, by building a smooth atlas.
 - 2. The Euclidean sphere \mathbb{S}^n is also a manifold as a submanifold of \mathbb{R}^{n+1} (see previous exercise sheet, exercise 4). Show that the differentiable structure built in question 1 is the same as the one induced by \mathbb{R}^{n+1} .
 - 3. What happens if we replace the Euclidean norm $\|\cdot\|_2$ by another norm $\|\cdot\|$?

Exercise 2 (Product manifolds). Let M and N be smooth manifolds, show that $M \times N$ is a smooth manifold. What is its dimension?

- **Exercise 3** (The torus). 1. Build a differentiable structure on $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ such that the canonical projection $p : \mathbb{R}^n \to \mathbb{T}^n$ is a local diffeomorphism.
 - 2. In the previous exercise sheet, we built an homeomorphism from \mathbb{T}^n to $(\mathbb{S}^1)^n \subset \mathbb{C}^n$ (exercise 5). Prove that this is in fact a diffeomorphism.

Exercise 4 (The projective space). Recall that \mathbb{RP}^n is defined as $(\mathbb{R}^{n+1} \setminus \{0\}) / \mathbb{R}^*$, where \mathbb{R}^* acts on \mathbb{R}^{n+1} by dilation. As a set, \mathbb{RP}^n is the set of lines in \mathbb{R}^{n+1} .

Let $x = (x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \setminus \{0\}$, we denote by $(x_0 : \cdots : x_n)$ its class in \mathbb{RP}^n .

- 1. Let $i \in \{0, \ldots, n\}$. Show that $U_i = \{(x_0 : \cdots : x_n) \in \mathbb{RP}^n \mid x_i \neq 0\}$ is open in \mathbb{RP}^n , and that it is homeomorphic to \mathbb{R}^n via the canonical projection $p : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$.
- 2. Show that \mathbb{RP}^n is a smooth manifold.
- 3. Show that p is smooth.
- 4. Show that the restriction of p to \mathbb{S}^n is a local diffeomorphism.