## Reminder on topology and calculus

Exercise 1 (Calculus). Show that the following maps are differentiable, and compute their differentials.

1. $(A, B) \longmapsto A B$ from $\mathcal{M}_{n k}(\mathbb{R}) \times \mathcal{M}_{k p}(\mathbb{R})$ to $\mathcal{M}_{n p}(\mathbb{R})$.
2. det : $\mathcal{M}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$.
3. $f \mapsto f^{-1}$ from $G L(E)$ to itself, where $E$ is a real vector space of finite dimension.
4. Let $\Omega \subset \mathbb{R}^{n}$ be an open set of compact adherence and $V$ a vector space of finite dimension of functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$ of class $\mathcal{C}^{1}$. We consider $F:(f, x) \mapsto f(x)$ from $V \times \Omega$ to $\mathbb{R}$.

Exercise 2 (Submanifolds). 1. Recall the four equivalent definitions of a $d$-dimensional submanifold of $\mathbb{R}^{n}$ (without proving that they are equivalent).
2. Among the following sets, which ones are submanifolds of $\mathbb{R}^{n}$ ? Give their dimensions. No precise justification is expected.
(a) The sphere of radius 1 in $\mathbb{R}^{n}$ for the euclidean norm.
(b) The sphere of radius 1 in $\mathbb{R}^{n}$ for the sup norm.
(c) A disjoint union of a straight line and a plane in $\mathbb{R}^{3}$.
(d) $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}-y^{2}=0\right\}$.
(e) $\left\{(x, y) \in \mathbb{R}^{2} \backslash\{0\} \mid x^{2}-y^{2}=0\right\}$.
(f) The image of $h:]-\infty, 1\left[\rightarrow \mathbb{R}^{2}\right.$ with $h: t \mapsto\left(\frac{t^{2}-1}{t^{2}+1}, t \frac{t^{2}-1}{t^{2}+1}\right)$.
3. Let $\Omega$ be an open subset of $\mathbb{R}^{d}$ and $h: \Omega \rightarrow \mathbb{R}^{n}$ an injective immersion, is $h(\Omega)$ a submanifold of $\mathbb{R}^{n}$ ?

Exercise 3 (Classical groups of matrices). Show that the following subgroups $\mathcal{M}_{n}(\mathbb{R})$ are submanifolds of $\mathcal{M}_{n}(\mathbb{R})$, and give their respective dimensions.

1. $G L_{n}(\mathbb{R})$,
2. $S L_{n}(\mathbb{R})$ (subgroup of matrices of determinant 1 ),
3. $O_{n}(\mathbb{R})$ (subgroup of orthogonal matrices).

Exercise 4 (A submanifold is a manifold). Let $\Sigma$ be a submanifold of dimension $d$ of $\mathbb{R}^{n}$ with $d \leqslant n$ and let $\iota: \Sigma \rightarrow \mathbb{R}^{n}$ be the canonical injection from $\Sigma$ into $\mathbb{R}^{n}$.

1. Show that $\Sigma$ is a manifold.
2. Let $f$ be a smooth map from $\mathbb{R}^{n}$ to $\mathbb{R}$. Show that the restriction $f_{/ \Sigma}: \Sigma \rightarrow \mathbb{R}$ is smooth.

Exercise 5 (Quotient topology). 1. Let $X$ be a topological space and $\sim$ be an equivalence relation on $X$. We denote by $p: X \rightarrow X / \sim$ the canonical projection. Recall the definition of the quotient topology on $X / \sim$ ?
2. Let $f: X / \sim \rightarrow Y$. Show that $f$ is continuous if and only if $f \circ p$ is.
3. Let $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ be the $n$-dimensional torus. Show that $\mathbb{T}^{n}$ is compact and Hausdorff, and that $p$ is an open map.
4. Let $f: K \rightarrow Y$ be continuous and bijective with $K$ compact Hausdorff and $Y$ Hausdorff. Show that $f$ is an homeomorphism? Give a counter-example if $Y$ is not Hausdorff.
5. We define $\mathbb{S}^{1}$ as $\left\{z \in \mathbb{C}||z|=1\}\right.$. Show that $\mathbb{T}^{1}$ is homeomorphic to $\mathbb{S}^{1}$. More generally, show that $\mathbb{T}^{n}$ is homeomorphic to $\left(\mathbb{S}^{1}\right)^{n} \subset \mathbb{C}^{n}$.
6. Let $\mathbb{R} \mathbb{P}^{n}$ be the space defined as the quotient of $\mathbb{R}^{n+1} \backslash\{0\}$ by the equivalence relation "being colinear". Show that $\mathbb{R P}^{n}$ is compact Hausdorff and that $p$ is open.

Exercise 6 (Surface of genus $g$ ). For any $g \in \mathbb{N}$, find a explicit map $F_{g}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\Sigma_{g}=\left(F_{g}\right)^{-1}(0)$ is a smooth surface of genus $g$ (that is a torus with $g$ holes).

(a) $g=0$

(b) $g=1$

(c) $g=2$

Hint: Seek $F_{g}$ of the form $F_{g}:(x, y, z) \mapsto z^{2}-f_{g}(x, y)$, where $f_{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is smooth.

