Reminder on topology and calculus

Exercise 1 (Calculus). Show that the following maps are differentiable, and compute their differentials.

- 1. $(A, B) \mapsto AB$ from $\mathcal{M}_{nk}(\mathbb{R}) \times \mathcal{M}_{kp}(\mathbb{R})$ to $\mathcal{M}_{np}(\mathbb{R})$.
- 2. det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$.
- 3. $f \mapsto f^{-1}$ from GL(E) to itself, where E is a real vector space of finite dimension.
- 4. Let $\Omega \subset \mathbb{R}^n$ be an open set of compact adherence and V a vector space of finite dimension of functions $\mathbb{R}^n \to \mathbb{R}$ of class \mathcal{C}^1 . We consider $F : (f, x) \mapsto f(x)$ from $V \times \Omega$ to \mathbb{R} .
- **Exercise 2** (Submanifolds). 1. Recall the four equivalent definitions of a *d*-dimensional submanifold of \mathbb{R}^n (without proving that they are equivalent).
 - 2. Among the following sets, which ones are submanifolds of \mathbb{R}^n ? Give their dimensions. No precise justification is expected.
 - (a) The sphere of radius 1 in \mathbb{R}^n for the euclidean norm.
 - (b) The sphere of radius 1 in \mathbb{R}^n for the sup norm.
 - (c) A disjoint union of a straight line and a plane in \mathbb{R}^3 .
 - (d) $\{(x,y) \in \mathbb{R}^2 \mid x^2 y^2 = 0\}.$
 - (e) $\{(x,y) \in \mathbb{R}^2 \setminus \{0\} \mid x^2 y^2 = 0\}.$
 - (f) The image of $h:]-\infty, 1[\to \mathbb{R}^2$ with $h: t \mapsto \left(\frac{t^2-1}{t^2+1}, t\frac{t^2-1}{t^2+1}\right)$.
 - 3. Let Ω be an open subset of \mathbb{R}^d and $h : \Omega \to \mathbb{R}^n$ an injective immersion, is $h(\Omega)$ a submanifold of \mathbb{R}^n ?

Exercise 3 (Classical groups of matrices). Show that the following subgroups $\mathcal{M}_n(\mathbb{R})$ are submanifolds of $\mathcal{M}_n(\mathbb{R})$, and give their respective dimensions.

- 1. $GL_n(\mathbb{R})$,
- 2. $SL_n(\mathbb{R})$ (subgroup of matrices of determinant 1),
- 3. $O_n(\mathbb{R})$ (subgroup of orthogonal matrices).

Exercise 4 (A submanifold is a manifold). Let Σ be a submanifold of dimension d of \mathbb{R}^n with $d \leq n$ and let $\iota : \Sigma \to \mathbb{R}^n$ be the canonical injection from Σ into \mathbb{R}^n .

- 1. Show that Σ is a manifold.
- 2. Let f be a smooth map from \mathbb{R}^n to \mathbb{R} . Show that the restriction $f_{\Sigma}: \Sigma \to \mathbb{R}$ is smooth.
- **Exercise 5** (Quotient topology). 1. Let X be a topological space and \sim be an equivalence relation on X. We denote by $p: X \to X/ \sim$ the canonical projection. Recall the definition of the quotient topology on X/ \sim ?
 - 2. Let $f: X/ \sim \to Y$. Show that f is continuous if and only if $f \circ p$ is.

- 3. Let $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ be the *n*-dimensional torus. Show that \mathbb{T}^n is compact and Hausdorff, and that p is an open map.
- 4. Let $f: K \to Y$ be continuous and bijective with K compact Hausdorff and Y Hausdorff. Show that f is an homeomorphism? Give a counter-example if Y is not Hausdorff.
- 5. We define \mathbb{S}^1 as $\{z \in \mathbb{C} \mid |z| = 1\}$. Show that \mathbb{T}^1 is homeomorphic to \mathbb{S}^1 . More generally, show that \mathbb{T}^n is homeomorphic to $(\mathbb{S}^1)^n \subset \mathbb{C}^n$.
- 6. Let \mathbb{RP}^n be the space defined as the quotient of $\mathbb{R}^{n+1} \setminus \{0\}$ by the equivalence relation "being colinear". Show that \mathbb{RP}^n is compact Hausdorff and that p is open.

Exercise 6 (Surface of genus g). For any $g \in \mathbb{N}$, find a explicit map $F_g : \mathbb{R}^3 \to \mathbb{R}$ such that $\Sigma_g = (F_g)^{-1}(0)$ is a smooth surface of genus g (that is a torus with g holes).

Hint: Seek F_g of the form $F_g: (x, y, z) \mapsto z^2 - f_g(x, y)$, where $f_g: \mathbb{R}^2 \to \mathbb{R}$ is smooth.