Rappels de topologie et calcul différentiel

Exercice 1 (Calculs de différentielles). Justifier que les applications suivantes sont différentielles et expliciter leur différentielle.

- 1. $(A, B) \mapsto AB \operatorname{de} \mathcal{M}_{nk}(\mathbb{R}) \times \mathcal{M}_{kp}(\mathbb{R}) \operatorname{dans} \mathcal{M}_{np}(\mathbb{R})$.
- 2. det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$.
- 3. $f \mapsto f^{-1}$ de GL(E) dans lui-même, où E est un espace vectoriel réel de dimension finie.
- 4. Soient $\Omega \subset \mathbb{R}^n$ un ouvert d'adhérence compacte et V un espace vectoriel de dimension finie, formé de fonctions $\mathbb{R}^n \to \mathbb{R}$ de classe \mathcal{C}^1 , on considère alors $(f,x) \mapsto f(x)$ de $V \times \Omega \to \mathbb{R}$.
- 5. (bonus) Dans le cas de la question 3, que se passe-t-il si E est un espace de Banach de dimension quelconque? (cf. St Raymond, sect. X.9 par exemple)

Exercice 2 (Restriction). Soit $f: \Omega \to \mathbb{R}^m$ une application lisse, où Ω est un ouvert de \mathbb{R}^n . Soit V un sous-espace affine de \mathbb{R}^n tel que $V \cap \Omega \neq \emptyset$, montrer que $f_{/V}$ est lisse. Exprimer la différentielle de $f_{/V}$ en fonction de celle de f.

Exercice 3 (Topologie quotient). 1. Soient X un espace topologique et \sim une relation d'équivalence sur X, on note $p: X \to X/\sim$ la projection canonique. Rappeler la définition de la topologie quotient sur X/\sim .

- 2. Soit $f: X/\sim Y$, montrer que f est continue si et seulement si $f\circ p$ est continue.
- 3. Soit $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$, montrer que \mathbb{T}^n est compact et p est ouverte.
- 4. Soit \mathbb{RP}^n l'espace obtenu en quotientant $\mathbb{R}^{n+1} \setminus \{0\}$ par la relation d'équivalence "être colinéaire", montrer que \mathbb{RP}^n est compact et p est ouverte.
- 5. Soit $f: K \to Y$ continue bijective avec K compact, f est-elle un homéomorphisme?
- 6. On définit \mathbb{S}^1 comme $\{z \in \mathbb{C} \mid |z| = 1\}$, montrer que \mathbb{T}^1 est homéomorphe à \mathbb{S}^1 . Plus généralement montrer que \mathbb{T}^n est homéomorphe à $(\mathbb{S}^1)^n$.
- 7. (bonus) Soit \mathbb{CP}^n l'espace obtenu en quotientant $\mathbb{C}^{n+1} \setminus \{0\}$ par la relation d'équivalence "être \mathbb{C} -colinéaire", montrer que \mathbb{CP}^n est compact et p est ouverte.

Exercice 4 (Sous-variétés). 1. Rappeler les quatre définitions équivalentes de sous-variété lisse de dimension d de \mathbb{R}^n .

- 2. Parmi les ensembles suivants, dire lesquels sont des sous-variétés lisses de \mathbb{R}^n et donner leur dimension. On n'attend pas de justification détaillée.
 - (a) La sphère unité de \mathbb{R}^n pour la norme euclidienne.
 - (b) La sphère unité de \mathbb{R}^n pour la norme sup.
 - (c) L'union disjointe d'un plan et d'une droite de \mathbb{R}^3 .
 - (d) Le tore $(\mathbb{S}^1)^n \subset \mathbb{R}^{2n}$.
 - (e) L'ensemble $\{(x,y) \in \mathbb{R}^2 \mid x^2 y^2 = 0\}.$
 - (f) L'ensemble $\{(x,y)\in\mathbb{R}^2\setminus\{0\}\mid x^2-y^2=0\}.$
 - (g) L'image de l'application $h:]-\infty, 1[\to \mathbb{R}^2$ définie par $h: t \mapsto \left(\frac{t^2-1}{t^2+1}, t\frac{t^2-1}{t^2+1}\right)$.
- 3. Soit Ω un ouvert de \mathbb{R}^d et $h:\Omega\to\mathbb{R}^n$ une immersion injective, $h(\Omega)$ est-elle une variété?
- 4. Montrer qu'une sous-variété lisse de \mathbb{R}^n de dimension d est une variété lisse de dimension d.