Responsable : Johannes Kellendonk

FICHE TD 9 - THEOREMES DE STOKES ET DE GAUSS

Exercice 1 1. Soit C une courbe fermée et non-intersectante de \mathbb{R}^2 et $l:[0,1] \to \mathbb{R}^2$ une paramétrisation de C. On note D le sous-ensemble borné de \mathbb{R}^2 sous-tendu par C. Soit $f:\mathbb{R}^2 \to \mathbb{R}$ une fonction scalaire et $\vec{F}:\mathbb{R}^2 \to \mathbb{R}^2$ une fonction vectorielle. Ecrire toutes les intégrales possibles que vous pouvez définir avec ces objets.

2. Même question avec S une surface fermée plongée dans \mathbb{R}^3 , B son intérieur, $\vec{\sigma}: D \to S$ une paramétrisation de S (avec D un sous-ensemble de \mathbb{R}^2), $f: \mathbb{R}^3 \to \mathbb{R}$ une fonction scalaire et $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$ une fonction vectorielle.

Exercice 2 Soit D le disque de rayon R dans \mathbb{R}^2 , et soit $\vec{\sigma}: D \to \mathbb{R}^3$ l'application définie par

$$D \ni (x,y) \mapsto \vec{\sigma}(x,y) = (x,y,x^2 - y^2) \in \mathbb{R}^3.$$

Vérifier le théorème de Stokes pour le champ de vecteurs \vec{V} défini par $\vec{V}(x,y,z)=x\ \vec{e}_1+y\ \vec{e}_2+z\ \vec{e}_3$.

Exercice 3 Soit S la demi-sphère supérieur dans \mathbb{R}^3 , c'est-à-dire

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \text{ et } z \ge 0\}.$$

Vérifier le théorème de Stokes pour le champ de vecteurs \vec{V} défini par $\vec{V}(x,y,z) = \vec{e}_1 + xz \ \vec{e}_2 + xy \ \vec{e}_3$.

Exercice 4 Soit S la sphère de rayon R dans \mathbb{R}^3 , c'est-à-dire

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = R\}.$$

Calculer le flux de \vec{V} à travers S pour les deux champs de vecteurs suivants :

- 1. $\vec{V}(x, y, z) = x^3 \vec{e}_1 + y^3 \vec{e}_2 + z^3 \vec{e}_3$,
- 2. $\vec{V}(x,y,z) = x^2 \vec{e}_1 + y^2 \vec{e}_2 + z^2 \vec{e}_3$.